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We study the classical problem of predicting an outcome variable, Y ,
using a linear combination of a d-dimensional covariate vector, X. We are
interested in linear predictors whose coefficients solve:

inf
β∈Rd

(
EPn

[∣∣Y −X
⊤
β
∣∣r]

)1/r
+ δ ρ (β) ,

where δ > 0 is a regularization parameter, ρ : Rd → R+ is a convex penalty
function, Pn is the empirical distribution of the data, and r ≥ 1. Our main
contribution is a new bound on the out-of-sample prediction error of such
estimators.

The new bound is obtained by combining three new sets of results. First,
we provide conditions under which linear predictors based on these estima-
tors solve a distributionally robust optimization problem: they minimize the
worst-case prediction error over distributions that are close to each other in a
type of max-sliced Wasserstein metric. Second, we provide a detailed finite-
sample and asymptotic analysis of the statistical properties of the balls of
distributions over which the worst-case prediction error is analyzed. Third,
we present an oracle recommendation for the choice of regularization param-
eter, δ, that guarantees good out-of-sample prediction error.

1. Introduction. The extent to which prediction algorithms can perform well not just
on training data, but also on new, unseen, testing inputs is a central concern in machine
learning. In fact, reducing a predictor’s testing error—or equivalently, improving its “out-of-
sample” performance or “generalization error”—possibly at the expense of increased training
error, is a typical informal motivation for introducing regularization strategies in statistical
estimation; see, for example, [35, Chapter 7] and [40, Chapter 7]. More generally, the study
of issues related to problems in which training and testing environments differ from one
another is the subject of several recent, rapidly growing areas of research at the intersection
of machine learning and statistics: transfer learning [44], distributional shifts [1, 31, 71],
domain adaptation [7, 52], adversarial attacks [41, 46], learning under biased sampling [65]
and cross-domain transfer performance [3] are some relevant examples.

In this paper, we study the classical problem of predicting an outcome variable, Y , using
a linear combination of a d-dimensional covariate vector, X. We focus on linear predictors
whose coefficients, β̂, solve the problem:

(1) arg inf
β∈Rd

(
EPn

[∣∣Y −X⊤β
∣∣r]
)1/r

+ δ ρ(β),
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where δ > 0 is a regularization parameter, ρ : Rd → R+ is a convex penalty function, Pn is
the empirical distribution of the data, and r ≥ 1. We assume that both ρ and r have been
determined by the statistician, and make no attempt to provide normative statements re-
garding their selection. The square-root LASSO (henceforth,

√
LASSO) [5], the square-root

group LASSO [18], the square-root sorted ℓ1 penalized estimator (SLOPE) [70], and the ℓ1-
penalized least absolute deviation estimator [76] provide examples of estimators obtained by
solving (1) with different choices for r and ρ.

We are interested in studying the out-of-sample prediction error associated to such estima-
tors; namely

(2) EQ

[∣∣Y −X⊤β̂
∣∣r],

where the expectation above is computed by fixing the estimated β̂, and then drawing new
covariates and outcomes according to some joint distribution Q. The distribution Q is similar,
but not necessarily equal to, the true data generating process, P, or the empirical distribution
of the data, Pn.

Our main result is the following upper bound on the out-of-sample prediction error (see
Theorem 5.1 for a formal statement).

THEOREM (Informal). If δ is chosen appropriately, then for all Q and at any β, with

high probability:

EQ

[∣∣Y −X⊤β
∣∣r]1/r ≤ EPn

[∣∣Y −X⊤β
∣∣r]1/r + (δ + Ŵr(P,Q))(1 + ρ (β)),(3)

where Ŵr denotes a type of max-sliced Wasserstein metric.

Consequently, for an appropriately chosen δ, linear predictors solving (1) have good out-
of-sample performance at the true, unknown distribution of the data P, and, also, at testing

distributions Q that are close to P in terms of Ŵr . In fact, we show that the objective function
in (1) serves as a lower and upper bound for the out-of-sample prediction error, up to some
adjustment terms (see Corollary C.1 in Appendix C.5).

We present a formal definition of the metric Ŵr in (4) below, and explain how distributions
that are close in this metric are required to have similar prediction errors (in a sense we make
precise). The proof of the theorem above is based on three intermediate results, which bring
together ideas related to distributionally robust optimization (DRO), finite sample analysis of
the max-sliced Wasserstein metric, and empirical process theory. We believe that the three
steps used to prove (3) provide results that are interesting in their own right, and in what
follows, we discuss each of these steps in more detail.

First, we show that estimators constructed using (1) are equivalent to those that solve a
DRO problem based on a Ŵr-ball around Pn (Theorem 2.1, Section 2). The DRO represen-
tation naturally yields finite-sample bounds for (2) in terms of (1), provided that distributions
Q are close to Pn in terms of our suggested metric (Section 2.3 provides examples of distri-
butions contained in the Ŵr-balls). Thus, our first result provides theoretical support for the
claim that predictors based on estimators obtained via (1) (such as the

√
LASSO and related

estimators) have good out-of-sample performance.
Second, we provide a detailed statistical analysis of the balls of distributions based on our

suggested metric. More precisely, we determine the required size of a ball centered at Pn

to guarantee that it contains P with high probability. We present both finite-sample results
(Theorem 3.1 and Theorem 3.2 in Section 3) and large-sample approximations (Theorem 4.1
and 4.2 in Section 4). The proofs of these results are based on a novel connection between
an upper bound for the Wasserstein distance in d = 1, and classical bounds from empirical
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process theory for self-normalized processes. Its relative simplicity enables us to find the
explicit constants above. Our analysis suggests that our balls are statistically larger than
those based on the standard Wasserstein metric (Remark 3). Because the balls we consider
are statistically larger, their radii can shrink to zero faster than order n−1/d (the usual rates
for Wasserstein balls), and still contain P (see Figure 1).

P∗
Pn

P

n−
1
d

n−
1
2n−

1
2

Fig 1: ρ-max-sliced Wasserstein ball of radius n−1/2 (blue) vs. d-dimensional Wasserstein
ball of radius n−1/2 (yellow) and n−1/d (green). The measure P∗ (orange) is the optimal
perturbation in the DRO formulation.

Third, we use the DRO representation of (1) and the statistical analysis of our max-sliced
Wasserstein balls to i) derive oracle recommendations for the penalization parameter δ (Sec-
tion 5) that guarantee good out-of-sample prediction error (Theorem 5.1 in Section 5.1);
and ii) present a test statistic to rank the out-of-sample performance of two different linear
estimators (Section 5.4). In Section 6 we present a small-scale simulation to illustrate the
performance of predictions based on the

√
LASSO but using our recommended parameter δ.

None of our results rely on sparsity assumptions about the true data generating process
or on the relation between the sample size and the number of covariates; thus, our results
broaden the scope of use of the

√
LASSO and related estimators in prediction problems.

1.1. Related Literature. Distributionally robust optimization problems have been shown
to be equivalent to various forms of penalized regression, variance-penalized estimation, and
dropout training [12, 13, 30, 37, 47, 53, 55], depending on the choice of uncertainty set. It is
typical to define uncertainty sets using metrics or divergences: e.g., total variation, Hellinger,
Gelbrich distance [55] or Kullback-Leibler divergence [24, 63]. To the best of our knowledge,
the use of the max-sliced Wasserstein metric to define uncertainty sets in DRO problems is
novel.

The DRO representation of (1) has been established in [10, Theorem 1] using a ball in a
modified Wasserstein metric, which is a common choice for the uncertainty set in the distri-
butionally robust optimization literature [11, 36, 37, 45, 48, 53, 66, 69]. Relative to previous
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results, beyond just changing the metric used in constructing the ball, we focus on convex
penalty functions (instead of only norms) and we explicitly identify a worst-case measure
in the DRO representation of (1), instead of relying on duality arguments. In this sense, our
proof can be seen as a natural extension of [8, Theorem 1].

DRO representations are known to be useful in many situations, for example, those where
the trained procedure will be evaluated on test data from a distribution P̃ that is close to that of
the training data, P, but may be different [7], when there are covariate shifts [2, 20, 60, 62, 67,
71, 72, 78], or when one experiences adversarial attacks [41, 46]. As discussed in the seminal
work of [8], DRO representations “offer a different perspective on regularization methods by

identifying which adversarial perturbations the model is protected against”. This a fortiori

means that in any helpful DRO representation, the set of adversarial distributions for which a
regularization method protects against must depend on the regularizer itself. Thus, it should
not be surprising that the max-sliced Wasserstein metric introduced in this paper depends
on ρ. And in fact, previous uses of the Wasserstein metric for DRO representations of the√

LASSO and related estimators also depend on ρ; c.f. Proposition 2 in [10].
Starting from [27, 34], the question of establishing finite sample bounds on the Wasserstein

metric and its variants has seen a spike in research activity over the last years: an incomplete
list is [15, 23, 49, 57, 68, 77]; see also the references therein. When d > 2r, tight rates for
Wr(Pn,P) are of the order n−1/d, i.e. they suffer from the curse of dimensionality. As our
results show, this is not the case for the ρ-MSW distance. The faster rates of convergence
for the max-sliced Wasserstein metric were first observed in [57] for subgaussian probability
measures and in [51] under a projective Poincaré/Bernstein inequality. More recently, [4]
have obtained sharp rates for r = 2 and isotropic distributions. Our rates are of the same
order, up to logarithmic factors, and simultaneously hold for all r ≥ 1 and all distributions
with finite higher-order moments. Lastly, let us mention that most of the papers cited above
only give explicit rates, while the constants are often non-explicit and large, cf. [33]. A
notable exception is the recent work of [56] and [39]. In particular, using log-concavity, [56]
derives sharp rates for the max-sliced Wasserstein metric that explicitly state the dependence
on the dimension of the data. In Section 5, we further discuss how our concentration results
can be used to provide a recommendation for δ based on our DRO representation.

A large part of the theoretical literature studying penalized regressions as in (1) has ex-
plicit recommendations for the choice of the penalization parameters, see [80] for a review.
For example, in the case of the

√
LASSO, [5, 6] proposed a pivotal penalization parameter

and establish asymptotic performance guarantees. For the case of the LASSO estimator, [22]
present conditions under which the popular cross-validation method has nearly optimal rates
of convergence in prediction norms, while [21] suggests utilizing a bootstrap approxima-
tion to estimate the penalization parameter. Our work complements these previous results by
recommending a penalization parameter that explicitly controls the out-of-sample prediction
error (for a finite sample and/or asymptotically).

1.2. Outline. The rest of the paper is organized as follows. In Section 2, we present a
detailed derivation of the DRO representation of (1). In Sections 3 and 4 we present rates
for the MSW distance Ŵr between the true and empirical measure, both for P with compact
support and for P satisfying a moment condition. Section 3 gives a finite sample analysis,
while Section 4 provides asymptotics. In Section 5, we present a recommendation for the se-
lection of regularization parameter, δn,r , that guarantees good out-of-sample prediction error.
We also present a test statistic to rank the out-of-sample performance of two different linear
estimators. In Section 6, we present a small-scale simulation to illustrate the performance of
predictions based on the

√
LASSO but using our recommended parameter δ. All the proofs

are collected in the Supplementary Material [54].
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1.3. Notation. Random Variables. We use capital, bold letters—such as Z and Z̃—to
denote Borel measurable random vectors in Rd, and use Zj to denote the j-th coordinate of Z.
We denote the set of all Borel probability measures in Rd by P(Rd) and let Pr(R

d)⊂P(Rd)
denote all Borel probability measures with finite rth moments. If the random vector Z has
distribution or law P ∈ P(Rd), we write Z∼ P. The expectation of Z is denoted as EP[Z].

Covariates and outcome variables. We reserve X for the random column vector col-
lecting the d covariates available for prediction, and Y for the scalar outcome variable. The
realizations of covariates and outcomes are denoted as x and y, respectively. In a slight
abuse of notation, we sometimes write (X, Y ) to denote a random vector in Rd+1 (instead of
(X⊤, Y )⊤).

Couplings. For two probability measures Q and P, we define a coupling of Q and P as any
element of P(Rd ×Rd) that preserves the marginals over Rd. We denote the collection of all
such couplings as Π(Q,P). By definition, if (Z̃,Z) is an Rd×Rd-valued random vector with
distribution π ∈Π(Q,P), then Z̃∼Q and Z∼ P.

Penalty functions. For a function ρ :Rd →R we write

ρ∗ (β) := sup
x∈Rd

{
β⊤x− ρ(x)

}

for its conjugate (see [64]). If ρ is convex, a vector β∗ is said to be a subgradient of ρ at a
point β if

ρ(x)≥ ρ(β) +β∗⊤ (x−β) , ∀x ∈Rd.

The set of all subgradients of ρ at β is called the subdifferential of ρ at β and is denoted by
∂ρ(β), [64, pp. 214-215].

Lastly, let us mention two important facts that will be relevant in Section 2.3. If ρ is
differentiable, then its subdifferential ∂ρ(β) is a singleton that equals the gradient of ρ at β;
see, for example, [64, Theorem 25.1]. If ρ is a norm in Rd, then ρ∗ is only equal to zero or
infinity; see [17, p. 93].

2. Reformulation of equation (1) as a DRO problem.

2.1. The ρ-max-sliced Wasserstein metric. For any r ∈ [1,∞) and ρ : Rd → [0,+∞), we
define the ρ-max-sliced Wasserstein (ρ-MSW) metric1 2

(4) Ŵr(P, P̃) := sup
γ∈Rd

(
inf

π∈Π(P,P̃)

1

1 + ρ(γ)

(
Eπ

[∣∣(Y −X⊤γ)− (Ỹ − X̃⊤γ)
∣∣r]
)1/r)

.

Here, for arbitrary distributions P and P̃, the set Π(P, P̃) denotes the collection of probability
distributions over random vectors ((X, Y ), (X̃, Ỹ )), with marginal distributions (P, P̃) (that
is, the set Π(P, P̃) is the collection of couplings of P and P̃). We refer to r as the Wasserstein
exponent.

1Sliced Wasserstein distances [16, 61]—i.e., distances between probability distributions that consider the aver-
age or maximum of standard Wasserstein distances between one-dimensional projections—have been the subject
of recent research in statistics and machine learning; see, for example, [43], [56] and the references therein. As
we already mentioned, the max-sliced Wasserstein distance has been studied recently in [4, 51, 57]. Its use in the
analysis of out-of-sample prediction error of the

√
LASSO and related estimators yields a hitherto unexplored

connection to the field of statistical optimal transport, which we hope to be attractive from a methodological point
of view.

2[54, Lemma B.2] shows that the ρ-MSW metric is indeed a metric.
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We remark that the infimum in the definition of Ŵr(Q,P) given in (4) is attained for fixed
γ.3 Furthermore, for any norm ρ, the supremum over γ in equation (4) is also attained.

Intuitively, P and P̃ are close in ρ-MSW metric with Wasserstein exponent r if, for any
γ, there exists a coupling of P and P̃ that makes the r-th norm of the difference of their

prediction errors small, relative to ρ(γ).
It is useful to compare the ρ-MSW metric to the d-dimensional Wasserstein metric with

cost ‖ · ‖, defined by

(5) Wr(P, P̃) := inf
π∈Π(P,P̃)

(
Eπ

[
‖(X̃, Ỹ )− (X, Y )‖r

])1/r
,

where ‖ · ‖ is an arbitrary metric on Rd+1. Remark 3 in the Supplementary Material [54]
shows that for a large class of penalty functions ρ, the balls constructed with (4) will typically
be larger than those based on (5) when the radius is the same.

It is also useful to note that our ρ-MSW metric is a slight generalization of the max-sliced

Wasserstein metric (MSW), first considered in [28, 43, 57, 58]. The MSW distance over
probability distributions P and P̃ on Rd+1 is defined as

(6) Wr(P, P̃) := sup
γ̃∈Rd+1:‖γ̃‖2=1

Wr(γ̃∗P , γ̃∗P̃) ,

where Wr is the one-dimensional Wasserstein metric, and γ̃∗P denotes the pushforward prob-
ability of P with respect to the linear map z ∈ Rd+1 7→ z⊤γ̃ ∈ R. The supremum is defined
over all linear, one-dimensional projections generated by the vectors in the unit sphere. We
provide further details about the MSW metric in the discussion following equation (17).

To further illustrate the similarities between the MSW and our ρ-MSW metric, it is conve-
nient to assume, for the moment, that ρ is a norm on Rd. Define the function ‖ · ‖ρ on Rd+1

via ‖γ̃‖ρ = |y|+ ρ(γ), where γ̃ = (γ, y), with γ ∈Rd and y ∈R. Note that ‖ · ‖ρ is a norm.
Then Lemma B.1 in the Supplementary Material [54] shows that the ρ-MSW metric can be
written as

Ŵr(P, P̃) = sup
γ̃∈Rd+1:‖γ̃‖ρ=1

Wr(γ̃∗P , γ̃∗P̃) .

Thus, when ρ(·) is a norm, the only difference between our ρ-MSW metric and the usual
MSW metric is the set of one-dimensional projections that are used to define each metric. For
example, when ρ(·) = ‖ · ‖1, the ρ-MSW metric considers the supremum on the unit sphere
defined by the ℓ1-norm, while the MSW metric considers the supremum on the unit sphere
defined by the ℓ2-norm. In both cases, restricting the norm of the one-dimensional linear
projections is needed to guarantee that these metrics are finite. This is achieved through the
normalizing factor (1 + ρ(γ)) in (4).

2.2. The DRO problem. We define the collection of distributions

Bδ(P) :=
{
Q ∈ Pr(R

d+1) : Ŵr(Q,P)≤ δ
}

=
{
Q ∈ Pr(R

d+1) : ∀γ ∈Rd ∃ a coupling π(γ) ∈Π(P,Q)

for which Eπ(γ)

[
|(Ỹ − Y ) + (X− X̃)⊤γ|r

]
≤ δr(1 + ρ(γ))r,

where
(
(X, Y ), (X̃, Ỹ )

)
∼ π(γ)

}
,

(7)

3Indeed, note that the function ((x, y), (x̃, ỹ)) 7→ |(ỹ − y) + (x̃− x)⊤γ|r is continuous and non-negative.
The result then follows from [74, Theorem 4.1].
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where we have suppressed the dependence of the ball Bδ(P) on r, ρ for notational simplicity.
The main result of this section establishes a formal connection between the solutions to

the problems in (1) and a DRO problem.

THEOREM 2.1. Fix 1 ≤ r < ∞. Let ρ : Rd → [0,+∞) be a convex penalty function.

Suppose that, for any β ∈Rd, there exists a subgradient β∗ ∈ ∂ρ(β) such that

(8)

∣∣∣∣γ⊤
(
β∗ − β

β⊤β
ρ∗
(
β∗)
)∣∣∣∣≤ ρ(γ), ∀ γ ∈Rd.

Then, for any δ ≥ 0 and any β ∈Rd we have

sup
P̃∈Bδ(P)

E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r]

=

(
r

√
EP

[
|Y −X⊤β|r

]
+ δ (1 + ρ(β))

)r

.(9)

Theorem 2.1 shows that the worst-case, out-of-sample performance of any linear predictor
over the collection of distributions Bδ(P) equals the r-th power of the objective function in
(1). The result in (9) thus implies

(10) arg infβ∈Rd

[
sup

P̃∈Bδ(P)

E
P̃

[∣∣Y −X⊤β
∣∣r]
]
= arg infβ∈Rd

r

√
EP

[
|Y −X⊤β|r

]
+ δρ(β).

Our interpretation of equation (10) is that the
√

LASSO and related estimators in (1) have
good out-of-sample performance for any testing distribution P̃, that is not far (in terms of the
ρ-MSW metric) from the baseline training distribution P. This result is independent of how
the regularization parameter δ is selected and generalizes the connection between regulariza-
tion and generalization performance first established in [8].

By construction, the minimax problem in (10) provides robustness in situations where
i) the trained procedure will be evaluated on test data from a distribution P̃ that is close
to that of the training data, P, but may be different [7]; ii) where there are covariate shifts
[2, 20, 60, 62, 67, 71, 72, 78]; or iii) when there is an adversarial attack [41, 46].

To the best of our knowledge, Theorem 2.1 is new. As mentioned above, a result in the
spirit of (10) for the case r = 2, penalty ρ(·) = ‖ · ‖p with p≥ 1, and Ŵr replaced by a mod-
ified Wasserstein metric (see [54, Sections C.4 and C.5] in the supplement for an extensive
discussion), was first established in [10, Theorem 1], using optimal transport duality [13, 37].
This has recently been extended to more general penalty functions [25, 79]. Our balls are
different to the ones considered in these papers as we focus on convex penalty functions.
Moreover, our proofs do not rely on duality arguments and explicitly identify a worst-case
measure P∗ ∈ Bδ(P) for (9), which is given by an additive perturbation of P (see Corollary
2.1 below). In this sense, our proof can be seen as a natural extension of the seminal results
in [8, Theorem 1].

We believe that Ŵr is the natural metric to assess out-of-sample performance, as it al-
lows for the construction of neighborhoods containing a general class of testing distributions
that are only required to generate similar prediction errors as the training distribution Pn. To
see this, note that the out-of-sample prediction error, Q 7→ EQ[|Ỹ − X̃⊤β|r]1/r , is a Lips-
chitz continuous function under the ρ-MSW metric for any given β and penalty function ρ.
Specifically, for any two distributions Q and P, the definition of ρ-MSW implies

| EQ[| Ỹ − X̃⊤β |r]1/r −EP[| Y −X⊤β |r]1/r | ≤ (1 + ρ(β))Ŵr,ρ(P,Q).(11)
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Consequently, 1 + ρ(β) can be interpreted as a Lipschitz constant that varies with β. Thus,
for fixed β, any two distributions that are close under the ρ-MSW metric have similar predic-
tion errors. The standard d-dimensional Wasserstein metric puts additional restrictions on the
testing distributions considered. This means that two distributions can have similar predic-
tion errors, but their Wasserstein distance could be very large, especially in high dimensions
(making the associated bounds not very useful in practice). In Section C.3 of the Supplemen-
tary Material [54], we further provide an example of two Gaussian distributions for which
the difference in prediction errors is small, but the standard Wasserstein metric is large.

We briefly sketch the proof of Theorem 2.1 here and refer to Section A.2 in the Supple-
mentary Material [54] for details: first note that (11) implies

(12) E
P̃

[∣∣Y −X⊤β
∣∣r]≤

(
r

√
EP

[∣∣Y −X⊤β
∣∣r]+ δ(1 + ρ(β))

)r
,

holds for any β ∈Rd and any P̃ ∈Bδ(P). We then show that for any β ∈ dom(ρ), the upper
bound given in (12) is tight. That is, we explicitly construct, for each β ∈ dom(ρ), a distribu-
tion P∗

β ∈Bδ(P), for which the bound holds exactly. The worst-case distribution is presented
in Corollary 2.1 below.

COROLLARY 2.1. For each β ∈ Rd the supremum in (9) is attained for the distribution

P∗
β corresponding to the random vector (X̃, Ỹ ) defined as

X̃=X− e

(
β∗ − β

β⊤β
ρ∗ (β∗)

)
, Ỹ = Y + e,

where

e :=
δ
(
Y −X⊤β

)

r

√
EP

[
|Y −X⊤β|r

] , (X, Y )∼ P.

In essence, the testing distribution that attains the worst out-of-sample performance is
an additive perturbation of the baseline training distribution. The perturbation has a low-
dimensional structure where a one-dimensional error, e, which is proportional to prediction
error, Y −X⊤β, is added to X using loadings that depend on the subgradient of ρ at β and
also on the conjugate of ρ.

REMARK 1. It is easy to see that the minimizer in (10) is attained. Denote it by β(P).
Then β(P) is also a minimizer of EP∗

β

[∣∣Y −X⊤β
∣∣r]. Indeed, for any β ∈Rd we have

EP∗

β

[
|Y −X⊤β|r

]
= sup

P̃∈Bδ(P)

E
P̃

[
|Y −X⊤β|r

]

≥ inf
β∈Rd

sup
P̃∈Bδ(P)

E
P̃

[
|Y −X⊤β|r

]

= sup
P̃∈Bδ(P)

E
P̃

[
|Y −X⊤β(P)|r

]

≥ EP∗

β

[
|Y −X⊤β(P)|r

]
.

In particular, for any linear predictor with slope β, it is always possible to find a perturbation

of P for which a predictor based on (10) performs better.

REMARK 2 (On condition (8)). If ρ is a norm, then the condition in (8) is automati-

cally satisfied; i.e., there exists a β∗ ∈ ∂ρ(β) such that (8) is true. Thus, the conclusion of

Theorem 2.1 holds for all ρ(·) = ‖ · ‖ that are norms.
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On the other hand, Example A.1 in the Supplementary Material [54] shows that condition
(8) can be satisfied by ρ which are not norms.

2.3. Examples of distributions in the ρ-MSW ball. In this subsection we analyze the types
of testing distributions that are contained in the ball defined in (7). We do this by considering
different estimators that take the form (1).

2.3.1.
√

LASSO. Let us take r = 2 and

ρ(β) = ‖β‖1 =
d∑

j=1

|βj |.

Under this choice of penalty function, the regression problem (10) is the objective function
of the

√
LASSO of [5], also studied in [6]. These papers have shown that the

√
LASSO es-

timator achieves the near-oracle rates of convergence in sparse, high-dimensional regression
models over data distributions that extend significantly beyond normality.

Clearly ρ is a norm; in particular, it is nonnegative and convex. Thus, Condition (8) of
Theorem 2.1 is satisfied, cf. [54, Remark A.1].

One set of distributions that belongs to a neighborhood of size δ based on the ρ-MSW
metric is:

B
√
LASSO

δ (P) :=
{
Q ∈ P2(R

d+1) | ∃ a coupling π ∈Π(Q,P) for which:

Eπ

[∣∣∣X̃j −Xj

∣∣∣
2
]
≤ δ2, ∀ j = 1, . . . , d, and Eπ

[∣∣∣Ỹ − Y
∣∣∣
2
]
≤ δ2,

where ((X, Y ), (X̃, Ỹ ))∼ π}.

(13)

This set of distributions contains perturbations of covariates and outcomes that are small

in 2-norm. We verify that B
√
LASSO

δ (P) ⊆ Bδ(P), where Bδ(P) is the set of balls used in
Theorem 2.1 and defined in (7).

To see this, notice Eπ[|X̃j −Xj |2]≤ δ2 for all j = 1, . . . , d implies condition (7), i.e.

Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
2
]
≤ δ2 (1 + ρ(γ))2 .

Indeed, the triangle inequality implies that for any γ ∈ Rd and any coupling π ∈ Π(P,Q)
consistent with (13), we have
√
Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
2
]
≤
√

Eπ

[∣∣∣Ỹ − Y
∣∣∣
2
]
+

d∑

j=1

|γj |
√

Eπ

[(
X̃j −Xj

)2]

≤ δ+ δ

d∑

j=1

|γj |= δ(1 + ρ(γ)).

Consequently, B
√
LASSO

δ (P) ⊆ Bδ(P). We note that the other direction, namely, Bδ(P) ⊆
B

√
LASSO

δ (P) does not hold in general.

It is worth mentioning that the set B
√
LASSO

δ (P) contains different versions of (X, Y )
measured with error. For example, any additive measurement error model of the form

X̃j =Xj + uj and Ỹ = Y + v, where E[u2j ]≤ δ2 and E[v2]≤ δ2. Also, B
√
LASSO

δ (P) con-

tains multiplicative errors-in-variables models where X̃j =Xjuj , and Ỹ = Y v, with u’s in-
dependent of (X, Y ), having mean equal to one, EP[X

2
j ]E[(uj − 1)2]≤ δ2, and independent

of v having mean equal to one and EP[Y
2]E[(v− 1)2]≤ δ2.
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It is well known that the conjugate of ρ is

ρ∗(β) =

{
0 max{|β1|, . . . , |βd|} ≤ 1,

∞ otherwise.

The argument is analogous to [54, Remark A.1]. Moreover, some algebra shows that β∗ =
(sign(β1), . . . , sign(βd))

⊤ , is a subgradient of ρ at β. Using these facts, we can determine
the worst-case distribution for each particular β. Indeed, Corollary 2.1 states that: X̃=X−
e (sign(β1), . . . , sign(βd))

⊤ , and Ỹ = Y + e, where

e :=
δ
(
Y −X⊤β

)
√
EP

[
(Y −X⊤β)2

] , (X, Y )∼ P.

The worst-case mean-squared error of
√
LASSO is attained at distributions where there is a

(possibly correlated) measurement error that has a factor structure. Note that the worst-case
distribution is an element of (13).

2.3.2. Square-root SLOPE. Now suppose again that r = 2, but let

ρ(β) =

d∑

j=1

λj |β|(j),

where λ1 ≥ · · · ≥ λd ≥ 0 and |β|(j) are the decreasing order statistics of the absolute values
of the coordinates of β. Under this penalty function—which is nonnegative—the penalized
regression problem in (10) is the objective function of the square-root SLOPE of [70].

An equivalent definition for this penalty function is

(14) ρ(β) =max
pm

d∑

j=1

λpm(j)|βj |,

where we maximize over all permutations, pm, of the coordinates {1, . . . , d}. It follows that
ρ is a norm, so Condition (8) of Theorem 2.1 is satisfied (see [54, Remark A.1]).

For a given β ∈ Rd, let pm∗ be a permutation that solves (14). Define β∗ by β∗
j =

λpm∗(j) sign(βj). Algebra shows that ρ(β) = β∗⊤β and β∗⊤γ ≤ ρ(γ), for any γ ∈ Rd.

It follows that ρ(γ)≥ ρ(β) + β∗⊤γ − β∗⊤β, which implies that β∗ is a subgradient of ρ at
β. Recall that ρ∗(β∗) = 0; thus, (8) holds.

In this case, distributions belonging to balls of size δ based on the ρ-MSW metric are

BSLOPE
δ (P) :={Q ∈ P2(R

d) : ∃ a coupling π ∈Π(Q,P) for which:

Eπ

[∣∣∣X̃(j) −X(j)

∣∣∣
2
]
≤ (δλj)

2, ∀ j = 1, . . . , d,

and Eπ

[∣∣∣Ỹ − Y
∣∣∣
2
∣∣∣∣≤ δ2, where ((X, Y ), (X̃, Ỹ ))∼ π},

where the decreasing order statistic is induced by the vector
(
Eπ

[∣∣∣X̃j −Xj

∣∣∣
2])

j=1,...,d
. As

for the
√
LASSO, we check that BSLOPE

δ (P) ⊆ Bδ(P). The triangle inequality implies that
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for any coupling π ∈Π(P,Q):
√
Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤ρ(γ)
∣∣∣
2
]
≤
√
Eπ

[∣∣∣Ỹ − Y
∣∣∣
2
]
+

d∑

j=1

|γj |
√

Eπ

[∣∣∣X̃j −Xj

∣∣∣
2
]

=

√
Eπ

[∣∣∣Ỹ − Y
∣∣∣
2
]
+

d∑

j=1

∣∣γ(j)
∣∣
√
Eπ

[∣∣∣X̃(j) −X(j)

∣∣∣
2
]

≤ δ (1 + ρ(γ)) ,

where the last equality follows by the definition of BSLOPE
δ (P) and (14).

Finally, we report the worst-case distribution for each particular β. Corollary 2.1 shows
that X̃=X− eβ∗ and Ỹ = Y + e, where the j-coordinate of β∗ is λpm∗(j) sign(βj) and

e :=
δ
(
Y −X⊤β

)
√

EP

[
|Y −X⊤β|2

] , (X, Y )∼ P.

Note that the worst-case distribution is an element of BSLOPE
δ (P).

3. Finite sample guarantees for the ρ-MSW-distance. Throughout this section we as-
sume that the data {(Xi, Yi)}ni=1 consists of i.i.d. draws from a true distribution P. We denote
the empirical distribution based on the available data by Pn. Furthermore we assume that ρ
satisfies

cd‖(γ,−1)‖ ≤ ρ(γ) + 1, ∀γ ∈Rd(15)

for a constant cd > 0 and a norm ‖ · ‖ on Rd+1. E.g. for γ(·) = ‖ · ‖1, (15) is satisfied with
cd = 1.

This section provides explicit upper bounds on the radius δ of the ball Bδ(Pn) defined
in (7), to guarantee that the true (and unknown) distribution, P, belongs to the ball Bδ(Pn)
with a pre-specified probability. Our derivations are valid for any finite sample, which means
that they hold regardless of the dimension of the covariates d, the sample size n, and the true
distribution P.

Recall from (4) that

Ŵr(P, P̃) = sup
γ∈Rd

inf
π∈Π(P,P̃)

1

1 + ρ(γ)

(
Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
r])1/r

.

Note that we can rewrite the equation above in terms of the one-dimensional Wasserstein
metric:

Ŵr(P, P̃) = sup
γ∈Rd

1

1 + ρ(γ)
Wr

([
(X, Y )⊤γ̄

]
∗
P,
[
(X̃, Ỹ )⊤γ̄

]
∗
P̃

)
,(16)

where γ̄⊤ = (γ⊤,−1) and f∗P denotes the pushforward measure of P with respect to a map
f :Rd+1 →R and Wr .

Using (15) we derive the following upper bound for Ŵr(P, P̃):

Ŵr(P, P̃) = sup
γ∈Rd

‖γ̄‖
1 + ρ(γ)

1

‖γ̄‖Wr

([
(X, Y )⊤γ̄

]
∗
P,
[
(X̃, Ỹ )⊤γ̄

]
∗
P̃

)

≤ cρ,d

(
sup

γ̃:‖γ̃‖=1
Wr

([
(X, Y )⊤γ̃

]
∗
P,
[
(X̃, Ỹ )⊤γ̃

]
∗
P̃

))
=: cρ,d Wr(P, P̃),(17)
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where cρ,d := max{1/cd,1} .
The quantity Wr defined in (17) is the max-sliced Wasserstein (MSW) distance on

(Rd+1,‖ · ‖). It is a special case of the Projection Robust Wasserstein (PRW) distance, also
called the Wasserstein Projection Pursuit (WPP), see [59, Definition 1]. The work in [59,
Proposition 1] shows that Wr(P, P̃) is a metric (the proof is stated for the case r = 2, but
carries over line by line to arbitrary r ≥ 1).

As stated in the Introduction, it is well known that, in the worst case, Wr(Pn,P) ≈
n−1/(d+1). In what follows, we show that the MSW distance Wr does not have this limi-
tation. To show this, we first make a few notational simplifications. We write Pγ and Fγ ,
respectively, for the distribution and cdf of the scalar (X, Y )⊤γ under P. Similarly, we write
Pγ,n and Fγ,n, respectively, for the probability measure and cdf of (X, Y )⊤γ under Pn. Note
that, by (17) we have Wr(P, P̃) = sup‖γ‖=1Wr(Pγ , P̃γ).

We now provide explicit upper bounds for Wr(P,Pn). By equation (17), for any δ we have

(18) P

(
Ŵr(P,Pn)≤ cρ,d · δ

)
≥ P

(
Wr(P,Pn)≤ δ

)
.

This means that probabilistic statements about Wr(P,Pn) translate immediately to the ρ-
MSW metric. For simplicity in the exposition, we first cover compactly supported measures
P in Section 3.1 and then the general case in Section 3.2.

3.1. The compactly supported case.

THEOREM 3.1. Let P have compact support. With probability at least 1− α,

Wr(Pn,P)
r ≤ C√

n
,

where

(19) C :=
(
180

√
d+ 2+

√
2 log

( 1
α

))
diam(supp(P))r ,

and diam(supp(P)) = sup{‖x− x̃‖∗ : x, x̃ ∈ supp(P)} is the diameter of the support of P

measured with respect to the dual norm ‖x‖∗ := supy:‖y‖=1 x
⊤y.

3.2. The general case. We now consider a more general set-up where P is an arbitrary
random variable that satisfies a mild moment condition; namely,

Γ := EP [‖(X, Y )‖s∗]<∞, for some s > 2r.(20)

Our result generalizes the work of [57] and [51], who provide rates for Wr(Pn,P) assuming
certain transport or Poincaré inequalities: we give similar rate statements with fully explicit
constants under assumption (20), that is easy to verify in practice.

Our main result in this section is the following:

THEOREM 3.2. Assume s > 2r and Γ<∞. Then, with probability greater than 1− 3α,

(21) Wr(Pn,P)
r ≤ C log (2n+ 1)r/s√

n
,

where

C := 2rr
(
180

√
d+ 2+

√
2 log

(
1

α

)
+

√
Γ

α

(
8

s/2− r

)√
log

(
8

α

)
+ (d+ 2)

)
.(22)
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4. Asymptotics for ρ-MSW-distance. We now provide asymptotic upper bounds for
the ρ-MSW distance between the true and empirical measure. For this, it is sufficient to
prove the corresponding bounds for Wr(P,Pn), as explained in (17) and (18). The following
theorem provides a Donsker type result, i.e. asymptotic (1/

√
n)-rates without logarithmic

factors, as well as an inequality for the expectation without an explicit constant. One can then
obtain concentration results similarly to [51, Theorem 3.7, 3.8] if a Bernstein tail condition
or Poincare inequality is satisfied. As before, we relegate the proofs of these results to the
Supplementary Material [54].

We first consider probability measures P with compact support.

THEOREM 4.1. If P is compactly supported, then

limsup
n→∞

P
(√

n Wr (Pn,P)
r ≥ x

)
≤ P

(
sup
t∈[0,1]

|B(t)| ≥ x

c

)
,

where c= diam(supp(P))r and (B(t))t∈[0,1] is a standard Brownian bridge.

We now state the general result:

THEOREM 4.2. Assume Γ= EP [‖(X, Y )‖s∗]<∞, for some s > 2r, and define

H+ :=
{
|t|s 1{t≤x⊤γ} : (γ, t) ∈Rd+1 × [0,∞), ‖γ‖= 1

}
,

H0 :=
{
1{x⊤γ≤t} : (γ, t) ∈Rd+1 ×R, ‖γ‖= 1

}
,

H− :=
{
|t|s 1{t>x⊤γ} : (γ, t) ∈Rd+1 × (−∞,0), ‖γ‖= 1

}
.

Then there exists a constant C :=C(r, s, d), such that for all t≥ 0,

limsup
n→∞

P
(√

n Wr(Pn,P)
r ≥ t

)
≤ P

(
sup

f∈H+∪H0∪H−

|Gf | ≥
t

C
√
Γ

)
,

where (Gf )f∈H+∪H0∪H− is a zero-mean Gaussian process with covariance

E [Gf1Gf2 ] = EP [f1f2]−EP [f1]EP [f2] ∀f1, f2 ∈H+ ∪H0 ∪H−.(23)

Furthermore, for all n ∈N, we have EP

[√
n Wr(Pn,P)

r
]
≤C

√
Γ.

5. Recommendation to select the regularization parameter δn,r .

5.1. Recommendation based on finite sample bounds. Our statistical analysis in Section
3 provides a concrete oracle recommendation to select the regularization parameter δn,r in
(1). Our choice is based on Theorem 3.2 and guarantees that the true data generating process
is contained in the ball Bδn,r

(Pn) with high probability:

(24) δn,r =max

{
1

cd
,1

}[
C log (2n+ 1)r/s√

n

]1/r
,

where cd is the constant such that cd‖(γ,−1)‖ ≤ ρ(γ) + 1 for all γ and C is the constant
defined in (22).

If the support of P is compact, we can specialize our recommendation to select the regu-
larization parameter δn,r with guidance from Theorem 3.1. This recommendation is

(25) δn,r =max

{
1

cd
,1

}[
C√
n

]1/r
,



14 MONTIEL OLEA, RUSH, VELEZ, WIESEL

where C is now the constant defined in (19). In the case of compact support, our recom-
mended regularization parameter only depends on P through the diameter of its support.4

Theorem 5.1 below shows that the objective function of the penalized regression in (1)
constitutes—up to some adjustment terms—an upper bound for the expected prediction error
at Q (provided it is close to P).

THEOREM 5.1. Suppose the conditions of Theorem 3.2 (or Theorem 3.1) holds. Consider

δn,r defined in (24) (or (25)). Then, for any ǫ ≥ 0 and Q such that Ŵr(P,Q) ≤ ǫ, with

probability greater than 1− 3α, we have for all β that

EQ

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

≤ EPn

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

+ (δn,r + ǫ) (1 + ρ(β)) .

The result implies that linear predictors that solve (1) and use our recommended parame-
ters δn,r have good out-of-sample performance at the true, unknown distribution of the data
P, and also at testing distributions Q that are close to P in the ρ-MSW metric.

Importantly, Theorem 5.1 (and Corollary C.1 in [54, Section C.5]) differs from other exist-
ing generalization bounds (such as Proposition 6 and Theorem 4 in [10]) in that i) our results
are explicit about the possibility of a difference between the testing distribution (Q) and the
distribution that generated the training data (P); ii) our results are derived without making
reference to an underlying linear regression model for the training data; iii) the generaliza-
tion error is evaluated at different values of β—and in particular, it can be evaluated at the
solution β̂ of (1)—as opposed to the true parameter of a linear regression model; finally, iv)
our results allow for a very general class of convex penalties and not only norms (although
we focus on a special type of loss functions). We refer to [54, Sections C.4 and C.5] for a
more extensive comparison to [10].

The oracle recommendation for the regularization parameter δn,r is typically not feasible
as it depends on the unknown parameter Γ. The next section presents a normalization strategy
on the covariates such that Theorem 5.1 holds with Γ= 2s.

An interesting avenue for future work is to use the results in [56] (which assume log-
concavity of the joint distribution of covariates and outcomes) to recommend a regularization
parameter roughly of order: ||Σ||1/2op

√
d log(n)/n1/r, where r ≥ 2 and || · ||op is the operator

norm of the covariance matrix of (X,Y ). To do this, it would be necessary to recover the
implicit constants that appear in [56, Theorem 1] (which only depend on r), and additionally
provide some results for the consistent estimation of the operator norm of Σ. Because the
rates in [56] are faster than ours (when d is fixed, their rates are of order n−1/r whereas ours
are of order n−1/(2r)), the regularization parameters based on the results of [56] will typically
be smaller (making it less likely that the robust predictors ignore the available covariates).
However, we remark that even for the Wasserstein metric on the real line, the rates of order
n−1/(2r) cannot be improved upon, unless one imposes further structure on the true data
generating process; see Theorem 7.11 and Corollary 7.12 in [14], and the discussion therein.

We note that our approach for choosing the regularization parameter, δ, is explicitly de-
signed to guarantee the bound on out-of-sample prediction error presented in Theorem 5.1.
As we have explained before, a sufficient condition to obtain such a bound is to ensure that
the true distribution, P, belongs to the ball Bδn,r

(Pn) with probability at least 1− α. Thus,

4Let us remark that estimating the support of a distribution is an intricate statistical question, going back at
least to [32]. We refer to [9, 26, 81] for some recent results in support estimation. We also remark that in some
applications (e.g. for discrete distributions arising in surveys) it is plausible that supp(P) is known and thus it
need not be estimated.
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Theorem 5.1 is possible thanks to the statistical analysis of the ρ-MSW metric. [10] acknowl-
edges that a similar strategy for selecting δ using concentration inequalities for the standard
Wasserstein metric would yield a recommendation of order O(n−1/d); see their discussion
after Theorem 4, p. 848. However, it is important to mention that there are other possibilities
for choosing δ that do not necessarily target generalization error. For instance, if we followed
the objective described in Section 1.1.2 of [10] (which the authors describe as covering the
true parameter of a linear regression model with probability at least 1− α), it would be pos-
sible to recommend values for the regularization parameter of order O(n−1/2). In particular,
for the

√
LASSO the authors recommend a tuning parameter equal to

λ=
π

π− 2

Φ−1(1− α/2d)√
n

,

which, up to a constant, coincides with the recommendation in [5]. In Section C.5 of the Sup-
plementary Material [54], we show that if we adopt the objective of [10] (and their assump-
tions), but use our DRO representation based on the ρ-MSW metric, we could recommend
the same or even a smaller regularization parameter.

5.2. Covariate Normalization. Our statistical analysis in Section 5.1 provides a concrete
oracle recommendation to select the regularization parameter δn,r in (1). The oracle recom-
mendation for δn,r is typically not feasible as it depends on the unknown parameter Γ. In
this section, we present a simple strategy to normalize the sample covariates that guarantees
a modified version of Theorem 5.1. This means that we can turn our oracle recommenda-
tion into a simple formula that only depends on the true and unknown distribution of the data
through the sth moment of the outcome (which is typically easy to estimate), while also guar-
anteeing robustness to perturbations of the test dataset distribution from that of the training
data in the form of (3) below. This pivotality was the original motivation for the use of the√

LASSO and related estimators.
For this we assume that the covariates in the data have been normalized to satisfy

EPn
[‖(X,0)‖s∗] = 1. This means that under minimal regularity conditions we can assume

that the true data generating process satisfies EP [‖(X,0)‖s∗] = 1. It is common practice to
impose some covariate normalization to estimate the parameters of the best linear predic-
tor using the

√
LASSO and related estimators; see [5, Equation 4 p.2] for an example of a

coordinate-wise, unit variance normalization.
The next theorem proposes a simple formula to select the regularization parameter δn,r ,

that does not depend on Γ, under our suggested normalization.

THEOREM 5.2. Suppose EP [‖(X,0)‖s∗] = 1 and EP[‖(0, . . . ,0, Y )‖s∗]1/s <∞ for some

s > 2r. In addition, set σ = max{EP[‖(0, . . . ,0, Y )‖s∗]1/s, 1} and assume that (15) holds

with cd > 0. Define the (ρ,σ)-MSW

(26) Ŵr,ρ,σ(P, P̃) := sup
γ∈Rd

(
inf

π∈Π(P,P̃)

1

σ+ ρ(γ)

(
Eπ

[∣∣(Y −X⊤γ)− (Ỹ − X̃⊤γ)
∣∣r]
)1/r)

.

and consider

(27) δn,r := max

{
1

cd
,1

}[
C log(2n+ 1)r/s)√

n

]1/r
,

where

C := 2rr
(
180

√
d+ 2+

√
2 log

(
1

α

)
+

√
2s

α

(
8

s/2− r

)√
log

(
8

α

)
+ (d+ 2)

)
.
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Then, for any ǫ≥ 0 and Q such that Ŵr,ρ,σ(P,Q)≤ ǫ, with probability greater than 1− 3α,

EQ

[∣∣Y −X⊤β
∣∣r
]1/r

≤ EPn

[∣∣Y −X⊤β
∣∣r
]1/r

+ (δn,r + ǫ) (σ+ ρ(β)) , ∀β .

We also reiterate that our recommendation for the selection of regularization parameter
does not rely on any sparsity assumption. We think this is an important point, as recent
work [38, 50] has argued that sparsity might not always be a compelling starting point in
applications.

5.3. Asymptotic recommendation. For compactly supported measures, Theorem 4.1
yields the asymptotic oracle recommendation

(28) δn,r = cρ,d

[
n−1/2 · q1−α

]1/r
· diam(supp(P)) ,

where cρ,d is as in (17), q1−α is the (1 − α)-quantile of the Kolmogorov distribution.
In the general case, Theorem 4.2 yields δn,r = [n−1/2 · Γ1/2 · C]1/r, for some constant
C =C(r, s, d,α). However, the constant C is hard to determine explicitly, since it depends on
α through the quantile of the zero-mean Gaussian process (Gf )f∈H+∪H0∪H− , whose covari-
ance structure depends on P and is given in (23) and is hard to bound explicitly. To the best of
our knowledge, a characterization of the exact asymptotic distribution of Ŵr(P,Pn)—or even
of its upper bound Wr(P,Pn)—is still an open research problem. While we conjecture that
the upper bounds we provide (both asymptotically and in finite samples) can be tightened, we
remark that even for the Wasserstein metric on the real line, the rates of order n−1/(2r) that
we obtain cannot be improved upon, unless one imposes further structure on the true data
generating process. See Theorem 7.11 and Corollary 7.12 in [14], and the discussion therein.

5.4. Application: ranking of estimators. Consider two estimators β1 = β1(Pn) and
β2 = β2(Pn), where Pn denotes the empirical distribution of i.i.d. draws from a true distri-
bution P. In this section, we investigate whether β1 has a better out-of-sample performance
than β2 over an uncertainty set B. That is,

(29) sup
Q∈B

EQ

[∣∣∣Y −X⊤β1

∣∣∣
r]1/r

≤ sup
Q∈B

EQ

[∣∣∣Y −X⊤β2

∣∣∣
r]1/r

.

We restrict our attention to uncertainty sets B that verify two conditions:

(i) B ⊆Bδ(P) for some δ, and ρ.
(ii) The supremum on the left side of (29) is achieved for P∗

β1

, and the supremum on the
right side of (29) is achieved for P∗

β2

, where P∗
βj

are defined according to Corollary 2.1
for j = 1,2.

Examples of such sets B are given in Section 2.3. Note that we cannot evaluate (29) directly,
as P is not observed. Instead, we propose the test statistic

Tn = n1/(2r)

(
EPn

[∣∣Y −X⊤β1

∣∣r]1/r −EPn

[∣∣Y −X⊤β2

∣∣r]1/r + δρ(β1)− δρ(β2)

2 + ρ(β1) + ρ(β2)

)
.

Corollary 5.1 states that Tn gives rise to a size–α test. For notational simplicity, we focus on
compactly supported probability measures P and remark that the same reasoning can be used
to derived tests for general P satisfying the assumptions of Theorems 3.2 and 4.2.

COROLLARY 5.1. In the setting of Theorems 2.1 and 3.1, consider C and cρ,d defined in

(19) and (17). Then, for any β1 and β2 satisfying (29), we have P (Tn > cρ,dC
1/r)≤ α.
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Fig 2: Ratio of the regularization parameter in (28) to that one in (30) for λ = 10, α =
0.05, n= 2,500, β = [1,0, . . .0]⊤, and σε = 1.

6. Simulations. Suppose that the training data consists of n i.i.d. draws from a linear
regression model, meaning Yi =X⊤

i β + σεεi. We take εi to be uniformly distributed over
the interval [−1,1]. The vector of covariates, Xi ∈ Rd, is generated as Xi = σελX̃i, where
X̃i is a d-dimensional vector of independent uniform random variables over the [0,1] interval,
independently of εi. The parameters controlling the simulation design are (β, σε, λ, d).

We first focus on linear prediction using coefficients estimated via the
√

LASSO (r = 2).
Recall from (28) that our oracle recommendation for the tuning parameter δn is n−1/4 ·
(q1−α)

1/2 ·diam(supp(P)) , where q1−α is the 1−α quantile of the Kolmogorov distribution.
Algebra shows (see Section C.1 of the Supplementary Material [54]) that

diam(supp(P)) = σελ
(
d+ (‖β‖1 + (2/λ))2

)1/2
.

For comparison, the typical oracle recommendation δ∗n for the
√

LASSO based on [5], can
be shown to equal

(30) n−1/2 · 3−1/2σελ ·Φ−1

(
1

2
+

(1− α)(1/d)

2

)
.

Figure 2 compares the ratio of (28) relative to (30). The figure shows that our recommen-
dation can be more than ten times larger than the typical recommendations in the literature.
Thus, one first concern is that the distributional robustness guaranteed by our choice of δ, as
defined in (28), could be achieved by setting all the coefficients to zero (an adversarial nature
cannot increase much the generalization error of such a predictor, as it does not rely at all on
covariates). We also note that the recent work of [19] has shown that larger tuning parameters
could lead to incentive compatibility in certain human-machine interactive environments.

We now argue that in our simulation design it is possible to figure out the smallest sample
size that would be required to avoid a “trivial” prediction. It is known, see [70], that β = 0d×1

is a solution to the
√

LASSO problem if and only if

(31)
‖ 1
n

∑n
i=1Xiyi‖∞√
1
n

∑n
i=1 y

2
i

≤ δn,2.

Using a Central Limit Theorem and a Law of Large of numbers, algebra shows (see Section
C.2 in the Supplementary Material [54]) that (31) holds with high probability whenever
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(a) n= 2125 (b) n= 2250

(c) n= 2375 (d) n= 2500

Fig 3: Fraction of simulation draws in which the
√

LASSO selects 0,1,. . . , 4 nonzero coefficients using
the regularization parameters defined in (28) (blue) and (30) (red), where d= 10 and β = [1,0, . . .0]⊤.

(32) n≤ 9 ·
∥∥∥∥∥

β√
β⊤β

∥∥∥∥∥

−4

∞
· (q1−α)

2 ·
(
d+ (‖β‖1 + (2/λ))2

)2
.

For d = 10, β = (1,0,0 . . .0)⊤, α = .05 (or equivalently q1−α = 1.358) the corresponding
conservative bound is of about 2,200. This means that it will take a relatively large sample
size in order for our regularization parameter to select at least some covariates for prediction.

We verify this conjecture numerically. We simulate data using the σε = 1, λ = 10, d =
10,β = [1,0, . . . ,0]⊤ and consider sample sizes n ∈ {2125,2250,2375,2500}. Our design
corresponds to a low-dimensional problem (10 covariates and at least 2,000 observations).
Figure 3 reports the histogram associated to the number of nonzero coefficients selected by
the

√
LASSO using the regularization parameters in (28) and (30). The numerical results

reported are in line with the bound derived in (32).
Training/Testing error. Figure 4 reports the training/testing root-mean squared prediction

error (RMSPE) associated to the three estimators considered in our simulations: the OLS
estimator, the

√
LASSO with the δ∗n as in (30), and the

√
LASSO with the δn as in (28).

The training data is generated according to the design described above for a sample size of
n = 2500. For testing, we perturb the true data generating process according to the worst-
case distribution derived in Corollary 2.1 with δn in (28) replacing δ. The plots report the
histogram—across simulations—of the relative RMSPE in the training (or testing) data. For
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(a) RMSPE ratio of the
√

LASSO using (30)
to the OLS estimator

(b) RMSPE ratio of the
√

LASSO using (28)
to the version using (30)

Fig 4: Histogram of Root Mean-Squared Prediction Error (RMSPE) ratios for two estimators using
training data (blue) and adversarial testing data (red).

example, Panel a) of Figure 4 reports the RMSPE of the
√

LASSO, divided by the root MSPE
of OLS, in both the training and testing data.

The simulation results are in line with the theoretical predictions. First, since we are con-
sidering a simulation design where n is large relative to d, the oracle δ∗n in (30) is close to
zero. This means that the predictions associated to the

√
LASSO in the training sample are

not very different to those obtained via OLS. Panel a) of Figure 4 indeed shows that the rel-
ative training error between the

√
LASSO (with the typical δ∗n) and OLS remains very close

to one across simulations. Panel b) shows that that the difference between the regularization
parameters in (30) and (28) generates a sizeable difference in training error. However, the
larger value of the tuning parameter does translate to better out-of-sample performance.

Finally, we verify the bound in Theorem 5.1. The corollary implies that with probability
at least 95% the RMSPE of the

√
LASSO in the testing set (for any distribution in the ball

that is ǫ away from the true data generating process) must be bounded by the sum of i) the
RMSPE of the

√
LASSO in the training set and ii) (δn + ǫ)(1 + ρ(β)). Figure 5 shows that

the bound holds for the recommended δn, but not for the usual one. Additional simulations
are reported in Section D of the Supplementary Material [54].

SUPPLEMENTARY MATERIAL

Proofs of theorems, additional derivations, and numerical simulations are provided in the
Supplementary Material [54].
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SUPPLEMENTARY MATERIAL TO “The out-of-sample prediction error of the
√

LASSO and
related estimators”

APPENDIX A: PROOFS OF RESULTS IN THE MAIN TEXT

A.1. Proofs of Remark 2, Example A.1 and Remark 3.

PROOF OF REMARK 2. Recalling that the dual norm of ‖ · ‖ is given by

‖x‖∗ := sup
y:‖y‖=1

x⊤y,(A.1)

[17, Example 3.26] states that ρ∗(x) =∞1{‖x‖∗>1}. Recall further that β∗ ∈ ∂ρ(β) if and only if

(β∗)⊤β− ρ∗(β∗) = ρ(β).(A.2)

Both facts together imply that ρ∗(β∗) = 0; thus, ‖β∗‖∗ ≤ 1 for all β∗ ∈ ∂ρ(β). Hence in (8), as
claimed, we have

(A.3)

∣∣∣∣γ⊤
(
β∗ − β

β⊤β
ρ∗(β∗)

)∣∣∣∣=
∣∣γ⊤β∗∣∣≤ ‖γ‖‖β∗‖∗ ≤ ‖γ‖, ∀ γ ∈Rd.

EXAMPLE (Condition (8) for a function ρ that is not a norm). Fix any compact set K ⊆Rd such

that −K =K and consider

ρ(β) = sup
y∈K

β⊤y.

Then ρ is convex (as a supremum of linear functions), finite (as K is compact), non-negative (as

K =−K), symmetric ρ(β) = ρ(−β) (as K =−K), and homogeneous ρ(λβ) = λρ(β). Thus,

ρ∗(β∗) = sup
γ∈Rd

(
β∗⊤γ − ρ(γ)

)
=

{
∞ if ∃γ ∈Rd s.t. β∗⊤γ − ρ(γ)> 0,

0 if β∗⊤γ − ρ(γ)≤ 0 for all γ ∈Rd.

By (A.2) we conclude that ρ∗(β∗) = 0 for all β ∈ Rd; therefore, β∗⊤γ ≤ ρ(γ) for all γ ∈ Rd. By

symmetry of ρ, we also have that |β∗⊤γ| ≤ ρ(γ). It follows that
∣∣∣∣γ⊤

(
β∗ − β

β⊤β
ρ∗(β∗)

)∣∣∣∣≤ ρ(γ), ∀ γ ∈Rd.

REMARK 3. Take any norm ‖ · ‖ on Rd+1 satisfying ‖(0, . . . ,0,1)‖ = 1 and recall that its dual

norm is given by (A.1). Assume that EP [‖(X, Y )‖r∗] < ∞ and consider a Wasserstein ball BW
δ (P)

with cost ‖ · ‖∗, defined as

(A.4) BW
δ (P) =

{
P̃ ∈ Pr(R

d+1) : Wr(P, P̃)≤ δ
}
.

We show that for ρ(·) = ‖·‖, the ball defined in (7) contains the ball in (A.4), i.e. BW
δ (P)⊆Bδ(P).

For this, we note that by (A.1) we have

Eπ

[∣∣∣∣
(
Ỹ − Y

)
+
(
X− X̃

)⊤
γ

∣∣∣∣
r]

≤ ‖(γ,−1)‖r Eπ

[
‖(X, Y )− (X̃, Ỹ )‖r∗

]

≤ (1 + ‖γ‖)r Eπ

[
‖(X, Y )− (X̃, Ỹ )‖r∗

]
.

We conclude

sup
γ∈Rd

inf
π∈Π(P,P̃)

1

1 + ‖γ‖
r

√
Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
r]

≤ inf
π∈Π(P,P̃)

r

√
Eπ

[
‖(X, Y )− (X̃, Ỹ )‖r∗

]
.

The above can be applied in particular to ‖ · ‖= ‖ · ‖p and ‖ · ‖∗ = ‖ · ‖q , where 1/p+ 1/q = 1.
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We note that the conditions used for the derivations in Remark 2 are sufficient, but not necessary.
To make this point, consider the case in which r = 2 and ρ(β) = ‖β‖1. The Wasserstein distance, W2,
between P and P̃ is defined by

W2(P, P̃) = inf
π∈Π(P,P̃)

Eπ[‖(X, Y )− (X̃, Ỹ )‖22]1/2 ,

where ‖ · ‖2 is the Euclidean distance. For any coupling π, the Cauchy-Schwarz inequality implies

Eπ

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤β
∣∣∣
2
]1/2

≤ ‖ (β,−1)‖2 Eπ

[
‖(X, Y )− (X̃, Ỹ )‖22

]1/2
,

where the right-hand side of the previous inequality is less than

(1 + ‖β‖2)Eπ

[
‖(X, Y )− (X̃, Ỹ )‖22

]1/2
.

Note that 1 + ‖β‖2 ≤ 1 + ‖β‖1, and thus

Ŵ2(P, P̃)≤W2(P, P̃).

Thus, balls based on the ρ-MSW metric can be larger than balls based on the d-dimensional Wasser-
stein metric, even when the latter does not use a cost function based on the dual norm of ρ. Our pre-
vious derivations also hold, mutatis mutandi, for penalty functions ρ(β) = ‖β‖p whenever p ∈ [1,2].
Remark 2 focuses on the case in which i) ρ is a norm, and ii) the cost function used in the d-dimensional
Wasserstein metric is associated to the dual norm of ρ to make our results directly comparable to those
in Proposition 2 in [10].

A.2. Proof of Theorem 2.1. In Section 2 we provided a proof sketch after the statement of
Theorem 2.1. Here we elaborate on the details of the proof. The statements of two steps mentioned in
Section 2 are repeated below for the reader’s convenience.

Step 1. We show that

(A.5)
(
E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r])1/r

≤ r

√
EP

[∣∣Y −X⊤β
∣∣r]+ δ (1 + ρ(β)) ,

holds for any β ∈Rd and any P̃ ∈Bδ(P).
Proving Step 1. Take an arbitrary P̃ ∈ Bδ(P) and let π(β) be an optimal coupling for Ŵr,ρ.

By writing π(β) we emphasize that the coupling will depend on β; though, this matters little for
the proof. Namely, ((X, Y ), (X̃, Ỹ ))∼ π(β) with (X, Y )∼ P and (X̃, Ỹ )∼ P̃. Consequently we
conclude that

E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r]

= Eπ(β)

[∣∣∣Ỹ − X̃⊤β
∣∣∣
r]

.

By the triangle inequality we obtain

r

√
Eπ(β)

[∣∣Ỹ − X̃⊤β
∣∣r]= r

√
Eπ(β)

[∣∣(Ỹ − Y ) + (Y −X⊤β) + (X− X̃)⊤β)
∣∣r]

≤ r

√
Eπ(β)

[
|Y −X⊤β|r

]
+ r

√
Eπ(β)

[∣∣(Ỹ − Y ) + (X− X̃)⊤β)
∣∣r].

Recalling the choice of π(β) we conclude that

r

√
Eπ(β)

[∣∣∣Ỹ − X̃⊤β
∣∣∣
r]

≤ r

√
EP

[∣∣Y −X⊤β
∣∣r]+ δ (1 + ρ(β)) .(A.6)

Step 2. We show that for any β ∈ dom(ρ), the upper bound given in Step 1 is tight; i.e. we construct
P∗ ∈Bδ(P), for which the bound holds exactly.

Proof Step 2. Let β∗ be an element of ∂ρ(β) satisfying Equation (8).
Consider the distribution P∗ corresponding to the random vector (X̃, Ỹ ) defined by

(A.7) X̃=X− e

(
β∗ − β

β⊤β
ρ∗(β∗)

)
, Ỹ = Y + e,
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where

e :=
δ(Y −X⊤β)

r

√
EP

[∣∣Y −X⊤β
∣∣r]

, (Y,X)∼ P.

The distributions P∗ and P are already coupled, since (X̃, Ỹ ) are measurable functions of (X, Y )∼
P. Let π∗(β) denote the coupling of (P∗,P).

Next we show that the distribution P∗ of (X̃, Ỹ ) is an element of Bδ(P): by construction we
have

Eπ∗(β)

[∣∣∣(Ỹ − Y ) + (X− X̃)⊤γ
∣∣∣
r]

= Eπ∗(β)

[
|e|r

∣∣∣∣∣1 +
(
β∗ − β

β⊤β
ρ∗(β∗)

)⊤
γ

∣∣∣∣∣

r]

=

∣∣∣∣∣1 + (β∗)⊤γ − β⊤γ

β⊤β
ρ∗(β∗)

∣∣∣∣∣

r

Eπ∗(β) [|e|r]

≤ [δ (1 + ρ(γ))]r ,

where the last inequality follows because

∣∣(β∗ − β

β⊤β
ρ∗(β∗)

)⊤
γ
∣∣≤ ρ(γ),

for any γ ∈Rd by the assumption in (8) and since EP[|e|r] = δr .
Thus, we only need to compute EP∗ [|Y −X⊤β|r] = Eπ∗(β)[|Ỹ − X̃⊤β|r]. Adding and sub-

tracting X⊤β and Y to Ỹ − X̃⊤β we have from (A.7)

Ỹ − X̃⊤β = Ỹ − Y + Y −X⊤β+ (X− X̃)⊤β =
(
Y −X⊤β

)
+ e (1 + ρ(β)) ,(A.8)

where the last term applies [64, Theorem 23.5, p. 218], which shows that for any proper, convex
function β∗ ∈ ∂ρ(β) if and only if

(β∗)⊤β− ρ∗(β∗) = ρ(β);

hence,

(
X− X̃

)⊤
β = e

(
β∗ − β

β⊤β
ρ∗(β∗)

)⊤
β = eρ (β) .

Therefore, using (A.8) and writing (Y −X⊤β) as e r
√

EP[|Y −X⊤β|r]/δ, we have that

EP∗

[∣∣∣Y −X⊤β
∣∣∣
r]

= Eπ∗(β)

[∣∣∣
(
Y −X⊤β) + e(1 + ρ(β))

∣∣∣
r]

=

∣∣∣∣
1

δ
r

√
EP[|Y −X⊤β|r] + (1 + ρ(β))

∣∣∣∣
r

EP [|e|r]

=

∣∣∣∣
r

√
EP

[
|Y −X⊤β|r

]
+ δ(1 + ρ(β))

∣∣∣∣
r

.

In the final step above, we again used that EP[|e|r] = δr .

A.3. Proof of Theorem 3.1. We first recall the representations for the one-dimensional
Wasserstein distance for r ≥ 1

Wr(Pγ,n,Pγ)
r =

∫ 1

0

∣∣∣F−1
γ,n(p)− F−1

γ (p)
∣∣∣
r
dp,(A.9)

and for r = 1

W1(Pγ,n,Pγ) =

∫

R

∣∣Fγ,n(t)− Fγ(t)
∣∣ dt,(A.10)
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see e.g. [14, Theorem 2.9, Theorem 2.10]. We also note that Wr is translation invariant, which implies

Wr
(
Pγ,n, Pγ

)
=Wr

([
((X, Y )− (x0, y0))

⊤ γ
]
∗
Pγ,n,

[
((X, Y )− (x0, y0))

⊤ γ
]
∗
Pγ

)
,

for any x0 ∈Rd and y0 ∈R. Defining c := diam(supp(P)), there is no loss of generality if we assume

supp(Pγ)⊆ [0, c] .(A.11)

Noting that |F−1
γ,n(p)− F−1

γ (p)| ≤ c for all p ∈ (0,1), we estimate

Wr(Pγ,n,Pγ)
r7 = sup

‖γ‖=1

∫ 1

0

∣∣∣F−1
γ,n(p)− F−1

γ (p)
∣∣∣
r
dp

≤ cr−1 sup
‖γ‖=1

∫ 1

0

∣∣∣F−1
γ,n(p)− F−1

γ (p)
∣∣∣ dp= cr−1 sup

‖γ‖=1

∫

R

∣∣Fγ,n(t)− Fγ(t)
∣∣ dt,

where the final inequality follows from (A.9) and (A.10). Next, recalling (A.11),

sup
‖γ‖=1

∫

R

∣∣Fγ,n(t)− Fγ(t)
∣∣ dt≤ sup

‖γ‖=1

∫ c

0
sup
t

∣∣Fγ,n(t)− Fγ(t)
∣∣ ds≤ c sup

f∈H
|EPn [f ]−EP[f ]| ,

where

H :=
{
1{x⊤γ≤ t} : γ ∈Rd+1, t ∈R

}
.

The claim now follows from Lemma B.3 in Section B.

A.4. Proof of Theorem 3.2. By Lemma B.4 in Section B with k = log (2n+ 1)1/s we have

(A.12) Wr(Pn,P)
r ≤ 2rr log (2n+ 1)r/s

(
I1 +

√
Γ∨ Γn

s/2− r
log (2n+ 1)−1/2 I2

)
,

where

I1 = sup
(γ, t)∈Rd+1×R

∣∣Fγ(t)− Fγ,n(t))
∣∣ ,

I2 = sup
(γ, t)∈Rd+1×R

(Fγ(t)− Fγ,n(t))
+

√
Fγ(t)(1− Fγ,n(t))

+ sup
(γ, t)∈Rd+1×R

(Fγ,n(t)− Fγ(t))
+

√
Fγ,n(t)(1− Fγ(t))

,

Γn = sup
‖γ‖=1

EPn

[
|(X, Y )⊤γ|s

]
= sup

‖γ‖=1

1

n

n∑

i=1

∣∣(Xi, Yi)
⊤γ
∣∣s ,

Γ= EP

[∥∥(X, Y )‖s2
]
= EP

[
sup

‖γ‖=1
|(X, Y )⊤γ|s

]
.

Next, by Markov’s inequality and the triangle inequality

P (Γn ≥C)≤ EP[Γn]

C
=

1

C
EP

[
sup

‖γ‖=1

1

n

n∑

i=1

∣∣∣(Xi, Yi)
⊤γ
∣∣∣
s
]
≤ Γ

C
.

Setting the last expression equal to α yields Γn ≤ Γ/α on a set of probability at least 1 − α.
Combining this with Lemma B.3 (to control I1) and Lemma B.5 (to control I2) yields that Wr(Pn,P)

r

is less than or equal to the following with probability greater than 1− 3α:

2rr log (2n+ 1)
r
s

[
1√
n

(
180

√
d+ 2+

√
2 log

(
1

α

))
+

√
Γ

α

1

s/2− r

1√
log (2n+ 1)

I2

]

≤ 2rr log (2n+ 1)
r
s√

n

[
180

√
d+ 2+

√
2 log

(
1

α

)
+

√
Γ

α

8

s/2− r

√
log

(
8

α

)
+ (d+ 2)

]
,

which is the claim.
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A.5. Proof of Theorem 4.1. This claim follows from the estimate

Wr(Pγ,n,Pγ)
r ≤ diam(supp(P))r sup

f∈H0
|EPn [f ]−EP[f ]|,

stated in the proof of Theorem 3.1 together with
√
n sup
f∈H0

|EPn [f ]−EP[f ]| ⇒ sup
f∈H0

|Gf |,

as in the proof of Theorem 4.2. As supf∈H0 |Gf | dominates supt∈[0,1] |B(t)| in stochastic order, this
concludes the proof.

A.6. Proof of Theorem 4.2. Note that again by [14, Proposition 7.14] we have

Wr(Pγ,n,Pγ)
r ≤ r2r−1

∫
|t|r−1|Fγ,n(t)− Fγ(t)|dt

= r2r−1
(∫ ∞

0
|t|r−1|(1− Fγ,n(t))− (1− Fγ(t))|dt+

∫ 0

−∞
|t|r−1|Fγ,n(t)− Fγ(t)|dt

)

≤ r2r−1 sup
f∈H+∪H0∪H−

|EPn [f ]−EP[f ]|
∫

(1∧ |t|r−s−1)dt

≤ c sup
f∈H+∪H0∪H−

|EPn [f ]−EP[f ]|,

where c := r2r−1
∫
(1 ∧ |t|r−s−1)dt. We next find an envelope F for H+ ∪H0 ∪H−: it is easy to

see that

sup
f∈H+

|f(x)| ≤ sup
‖γ‖=1

|x⊤γ|s ≤ ‖x‖s∗.

A similar argument for H− yields

F (x) := sup
f∈H+∪H0∪H−

|f(x)| ≤ ‖x‖s∗ ∨ 1.

As H0 is VC-subgraph by Lemma B.3, [Van der Vaart, Wellner, Lemma 2.6.22] implies that H+

and H− are also VC-subgraph: indeed note that

{(x, u) : u≤ |t|s1{t≤x⊤γ}}= {(x, u) : t≤ x⊤γ, u≤ |t|s} ∪ {(x, u) : t > x⊤γ}

= {(x, u) : t≤ x⊤γ} ∩ {(x, u) : u≤ |t|s} ∪ {(x, u) : t > x⊤γ},
so the claim follows from the fact that H is VC, finite dimensional vector spaces of functions are VC
subgraph [Van der Vaart, Wellner, Lemma 2.6.15], and [Van der Vaart, Wellner, Lemma 2.6.17 (ii),
(iii)]. Then, [Van der Vaart, Wellner, Theorem 2.6.7] states that for all ǫ ∈ (0,1),

N(ǫ‖F‖Q,2,H+ ∪H0 ∪H−,L2(Q))≤C1

(1
ǫ

)2C2−1
,

for universal constants C1,C2 > 1 and any probability measure Q, for which ‖F‖Q,2 > 0. Thus,
∫ ∞

0
sup
Q

√
logN(ǫ‖F‖Q,2,H+ ∪H0 ∪H−,L2(Q))dǫ <∞,

and together with Γ < ∞, [Van der Vaart, Wellner, Theorem 2.5.2] implies that H+ ∪ H0 ∪ H− is
Donsker. Thus, the convergence in distribution

√
n sup
f∈H+∪H0∪H−

|EPn [f ]−EP[f ]| ⇒ sup
f∈H+∪H0∪H−

|Gf |,

holds, where (Gf ) is a zero-mean Gaussian process satisfying

E[Gf1Gf2 ] = EP[f1f2]−EP[f1]EP[f2],
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for any f1, f2 ∈H+ ∪H0 ∪H−. Next, from the proof of [Van der Vaart, Wellner, Theorem 2.5.2] we
obtain the inequality

EP

[
√
n sup
f∈H+∪H0∪H−

|EPn [f ]−EP[f ]|
]

≤C
√
Γ

∫ ∞

0
sup
Q

√
logN

(
ǫ‖F‖Q,2,H+ ∪H0 ∪H−,L2(Q)

)
dǫ.

This shows the second claim.

A.7. Proof of Theorem 5.1. Note that Ŵr(Pn,Q)≤ Ŵr(Pn,P) + Ŵr(P,Q) by the triangle
inequality because Ŵr is a metric. Then,

En :=
{
Ŵr(Pn,Q)> δn,r + ǫ

}
⊂
{
Ŵr(Pn,P)> δn,r

}
⊂
{
Wr(Pn,P)> δn,r/cρ,d

}
,

which implies that the probability of Ec
n is greater than 1− 3α due to Theorem 3.2 (or 3.1). In the

equation above, cρ,d is defined via (17). Finally, on the event Ec
n, we have

EQ

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

≤ sup
P̃∈Bδn,r+ǫ(Pn)

E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

= EPn

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

+
(
δn,r + ǫ

)
(1 + ρ(β)) , ∀β ,

where the last equality follows from Theorem 2.1.

A.8. Proof of Theorem 5.2. The proof has three steps. The first two steps adapt what we learn
in Section 3 to our particular setup. The last step concludes based on observations about Theorems 2.1
and 3.2.

Step 1: Let us compare the (ρ,σ)-MSW metric to the MSW metric using reasoning that is similar
to our derivations in (16) – (17). Defining γ̄⊤

σ = (γ⊤,−σ), we obtain

Ŵr,ρ,σ(P, P̃) = sup
γ∈Rd

‖γ̄σ‖
σ+ ρ(γ)

1

‖γ̄σ‖
Wr

([
(X, Y/σ)⊤γ̄σ

]
∗
P, [(X̃, Ỹ /σ)⊤γ̄σ]∗P̃

)

≤ (max{1/cd,1}) sup
‖γ‖=1

Wr

([
(X, Y/σ)⊤γ

]
∗
P, [(X̃, Ỹ /σ)⊤γ]∗P̃

)

= (max{1/cd,1})Wr

(
Pσ, P̃σ

)
,

where Pσ := (X, Y/σ)∗P and P̃σ := (X, Y/σ)∗P̃.
Step 2: Let us apply Theorem 3.2 to compute the rates for Wr(P

σ, P̃σ), which depend on
EPσ [‖(X, Y )‖s∗]. Consider the following derivation

EPσ [‖(X, Y )‖s∗]≤ 2s−1 (EPσ [‖(X,0)‖s∗] +EPσ [‖(0, . . . ,0, Y )‖s∗]) .

Note that EPσ [‖(X,0)‖s∗] = EP [‖(X,0)‖s∗] = 1 and

EPσ [‖(0, . . . ,0, Y )‖s∗] = EP [‖(0, . . . ,0, Y/σ)‖s∗]≤ 1,

due to our assumptions. This implies that

EPσ [‖(X, Y )‖s∗]≤ 2s .

Step 3: We note that Theorem 3.2 still holds for any Γ larger than EP [‖(X, Y )‖s∗]. In particular, we
can consider Γ= 2s due to Step 2. In addition, we note that the conclusion of Theorem 2.1 is unaffected
when replacing Ŵr by Ŵr,ρ,σ and the choice of σ ≥ 1. These observations and the argument presented
in the proof of Theorem 5.1 conclude our proof.
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A.9. Additional remark on selection of ρ. While we are able to provide a recommendation
for δ, our current results do not allow us to say anything concrete about the selection of penalty
function, ρ. This is in part due to the fact that, in our framework, we have too much flexibility making
this choice. To illustrate this point, suppose that we wanted to pick the penalty function to optimize
the out-of-sample prediction error of a linear predictor based on (1) at a known distribution Q. If n
denotes the sample size, we could always pick the convex penalty function

ρn(β) := n
(
EQ

[∣∣∣Y −X⊤β
∣∣∣
r])1/r

.

As n grows to infinity, the relevance of the penalty function increases, and thus the solution of (1)
converges to

arg inf
β∈Rd

(
EQ

[∣∣∣Y −X⊤β
∣∣∣
r])1/r

.

This just formalizes the obvious point that if we know the testing distribution Q at which we would
like to have good performance, then it is better to use the best predictor based on such a distribution.

A.10. Proof of Corollary 5.1. By Theorem 1 and conditions (i), (ii) above, (29) is equivalent
to

EP

[
|Y −X⊤β1|r

]1/r
+ δρ(β1)≤ EP

[
|Y −X⊤β2|r

]1/r
+ δρ(β2) .

The previous expression is equivalent to

n−1/(2r) (2 + ρ(β1) + ρ(β2))Tn ≤∆n(β2)−∆n(β1) ,

where ∆n(β) = EP[|Y −X⊤β|r]1/r −EPn [|Y −X⊤β|r]1/r . By definition of Ŵr and Theorem 2.1,
it follows that

∆n(β2)

1 + ρ(β2)
≤ Ŵr(P,Pn), and

−∆n(β1)

1 + ρ(β1)
≤ Ŵr(Pn,P).

Therefore, we have

n−1/(2r) (2 + ρ(β1) + ρ(β2))Tn ≤ Ŵr(P,Pn) (2 + ρ(β1) + ρ(β2)) .

Using Ŵr(P,Pn)≤ cρ,dWr(Pn,P) from (17), we derive that

P

(
Tn > cρ,dC

1/r
)
≤ P

(
cρ,dWr(P,Pn)> cρ,dC

1/rn−1/(2r)
)
.

Finally, Theorem 3.1 implies that the above probability is bounded by α.

APPENDIX B: AUXILIARY RESULTS

We start with a preliminary discussion of Ŵr .

LEMMA B.1. Suppose that ρ is a norm on Rd. Define the norm ‖ · ‖ρ via

‖γ̃‖ρ := |γd+1|+ ρ(γ),

for γ̃ = (γ, γd+1), where γ ∈Rd and γ ∈R. Then

Ŵr,ρ(P, P̃) = sup
γ̃∈Rd+1:‖γ̃‖ρ=1

Wr(γ̃∗P , γ̃∗P̃) ,

and there exist positive constants c1 and c2 (may depend on the dimension d) such that

c1Ŵr,ρ(P, P̃)≤Wr(P, P̃)≤ c2Ŵr,ρ(P, P̃).
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PROOF. Denote Z= (X⊤, Y ) and Z̃= (X̃⊤, Ỹ ). By definition

Ŵr,ρ(P, P̃) = sup
γ∈Rd

1

1 + ρ(γ)
inf

π∈Π(P,Q)
Eπ

[
|Z⊤(γ,−1)− Z̃⊤(γ,−1)|r

]1/r

= sup
γ∈Rd

1

‖(γ,−1)‖ρ
inf

π∈Π(P,Q)
Eπ

[
|Z⊤(γ,−1)− Z̃⊤(γ,−1)|r

]1/r

= sup
γ∈Rd

inf
π∈Π(P,Q)

Eπ

[∣∣∣∣(Z− Z̃)⊤
(

γ

‖(γ,−1)‖ρ
,

−1

‖(γ,−1)‖ρ

)∣∣∣∣
r]1/r

≤ sup
γ̃=(γ,γd+1)∈Rd+1:‖γ̃‖ρ=1

inf
π∈Π(P,Q)

Eπ

[
|Z⊤γ̃ − Z̃⊤γ̃|r

]1/r

= sup
γ̃=(γ,γd+1)∈Rd+1:‖γ̃‖ρ=1

Wr(γ̃∗P , γ̃∗P̃)

= sup
γ̃=(γ,γd+1)∈Rd+1

1

|γd+1|(1 + ρ(γ/|γd+1|))
inf
π

Eπ

[
|Z⊤γ̃ − Z̃⊤γ̃|r

]1/r

= sup
(γ,γd+1)∈Rd+1

1

(1 + ρ(γ/|γd+1|))
inf

π∈Π(P,Q)
Eπ

[∣∣∣∣(Z− Z̃)⊤
(

γ

|γd+1|
,
γd+1

|γd+1|

)∣∣∣∣
r]1/r

≤ Ŵr,ρ(P, P̃) .

This proves our first result. Now, to prove the second result we rely on the following representations.

Wr(P, P̃) = sup
γ̃∈Rd+1:‖γ̃‖2=1

Wr(γ̃∗P , γ̃∗P̃) = sup
γ̃∈Rd+1

1

‖γ̃‖2
Wr(γ̃∗P , γ̃∗P̃),

and

Ŵr,ρ(P, P̃) = sup
γ̃∈Rd+1

1

‖γ̃‖ρ
Wr(γ̃∗P , γ̃∗P̃) .

Because ‖ · ‖2 and ‖ · ‖ρ are norms on Rd+1, it follows that there exist positive constants c1 and c2
such that

c1
‖γ̃‖ρ

≤ 1

‖γ̃‖2
≤ c2

‖γ̃‖ρ
, ∀γ̃ ∈Rd+1 .

We conclude the second result by using the previous inequality and the representations for Wr(P, P̃)

and Ŵr,ρ(P, P̃) presented above.

More generally, Ŵr is always a metric, as the following lemma shows:

LEMMA B.2. The ρ-max-sliced Wasserstein Ŵr,ρ distance is a metric.

PROOF. Recall from (16) that

Ŵr(P, P̃) = sup
γ∈Rd

1

1 + ρ(γ)
Wr

([
(X, Y )⊤γ̄

]
∗
P,
[
(X̃, Ỹ )⊤γ̄

]
∗
P̃

)
,

where γ̄⊤ = (γ⊤,−1). Because the one-dimensional Wasserstein metric, Wr , is non-negative, sym-
metric and satisfies the triangle inequality, the same is true for Ŵr . It remains to show that Ŵr(P, P̃) =

0 implies P= P̃. For this, we first see that because 1+ ρ(γ)> 0, it follows that Ŵr(P, P̃) = 0 implies

Wr

([
(X, Y )⊤γ̄

]
∗
P,
[
(X̃, Ỹ )⊤γ̄

]
∗
P̃

)
= 0, ∀γ ∈Rd.(A.13)
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Now, for any γ̃ ∈ Rd+1 satisfying ‖γ̃‖2 = 1 and γ̃d+1 ≤ 0, there exists a sequence {γn}n∈N in Rd

such that

lim
n→∞

γ̄n

‖γ̄n‖2
= γ̃,

where again γ̄⊤
n := (γ⊤

n ,−1). By continuity, this implies

Wr

([
(X, Y )⊤γ̃

]
∗
P,
[
(X̃, Ỹ )⊤γ̃

]
∗
P̃

)
= 0, ∀ γ̃ ∈Rd+1 with γ̃d+1 ≤ 0;

and because
[
(X, Y )⊤γ̃

]
∗
P =

[
(X, Y )⊤γ̃

]
∗
P̃ implies

[
−(X, Y )⊤γ̃

]
∗
P =

[
−(X, Y )⊤γ̃

]
∗
P̃, we

have

Wr

([
(X, Y )⊤γ̃

]
∗
P,
[
(X̃, Ỹ )⊤γ̃

]
∗
P̃

)
= 0, ∀ γ̃ ∈Rd+1.

Positivity of Ŵr now follows from the fact that Wr is positive. This concludes the proof.

LEMMA B.3 (cf. [75, Theorem 4.10], [29, Chapter 4]). Let

H :=
{
1{x⊤γ≤ t} : γ ∈Rd+1, t ∈R

}
(A.14)

be the set of indicator functions of half spaces. Then, with probably at least 1− α,

sup
(γ,t)∈Rd+1×R

∣∣Fγ,n(t)− Fγ(t)
∣∣= sup

f∈H
|EPn [f ]−EP[f ]| ≤ 180

√
d+ 2

n
+

√
2

n
log

(
1

α

)
.

PROOF. By [75, Theorem 4.10], we have

P

(
sup
f∈H

|EPn [f ]−EP [f ]|> 2Rn(H) + ǫ

)
≤ e−nǫ2/2,

where

Rn(H) := EP,ε

[
sup
f∈H

∣∣∣∣∣
1

n

n∑

i=1

εif (Xi)

∣∣∣∣∣

]
,

is the Rademacher complexity of H. Next, following [29, statement and proof of Theorem 3.2], we
obtain

Rn(H)≤ 12√
n

max
x1,...,xn∈Rd+1

∫ 1

0

√
2 logN

(
r,H(xn1 )

)
dr,(A.15)

where xn1 := {x1, . . . ,xn} and

H(xn1 ) := {(f(x1), . . . , f(xn)) : f ∈H} ,
and N(r,B) is defined as the cardinality of the smallest cover for any set B ⊆ {0,1}n of radius r with
respect to the distance

ρ(b,d) :=

√√√√ 1

n

n∑

i=1

1{bi 6=di},

where in the above, vectors b,d ∈B. [29, Theorem 4.3] states that

N(r,H(xn1 ))≤
(
4e

r2

)V/(1−1/e)

=

(
4e

r2

)V e/(e−1)

,(A.16)

where V is the VC-dimension of H. Furthermore, by [29, Corollary 4.2], the VC-dimension of H is
bounded by d+ 2, i.e. V ≤ d+ 2. In conclusion, using (A.16),

logN (r,H(xn1 ))≤
eV

e− 1
log

(
4e

r
2

)
≤ e(d+ 2)

e− 1
log

(
4e

r
2

)
.(A.17)
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Following [29, proof of Theorem 3.3] we estimate
∫ 1

0

√
log

(
4e

r
2

)
dr ≤

√
2πe,(A.18)

so that from (A.17) and (A.18), we have
∫ 1

0

√
2 logN(r,H(xn1 ))dr ≤ 2e

√
(d+ 2)π

e− 1
≤ 7.5

√
d+ 2.

Using (A.15), this yields

Rn(H)≤ 90

√
d+ 2

n
.

LEMMA B.4. Define

Γn := sup
‖γ‖=1

EPn

[∣∣∣(X, Y )⊤γ
∣∣∣
s]

= sup
‖γ‖=1

1

n

n∑

i=1

∣∣∣(X, Y )⊤i γ
∣∣∣
s
.

For any k ∈R+, we have

Wr(Pn,P)
r ≤ r(2k)r sup

(γ,t)∈Rd+1×R

∣∣Fγ,n(t)− Fγ(t))
∣∣

+
2rr

√
Γ∨ Γn

s/2− r
kr−

s
2

[
sup

(γ,t)∈Rd+1×R

(Fγ(t)− Fγ,n(t))
+

√
Fγ(t)(1− Fγ,n(t))

+ sup
(γ,t)∈Rd+1×R

(Fγ,n(t)− Fγ(t))
+

√
Fγ,n(t)(1− Fγ(t))

]
,

with the convention that 0/0 = 0 and the notation x+ := max{0, x}.

PROOF. We first note that [14, Proposition 7.14] yields, for any k > 0,

Wr(Pγ,n,Pγ)
r ≤ r2r−1

∫
|t|r−1|Fγ,n(t)− Fγ(t)|dt

≤ r(2k)r sup
t

|Fγ,n(t)− Fγ(t))|

+ r2r−1
∫

R\[−k,k]
|t|r−1

√
Fγ(t)(1− Fγ,n(t))

(Fγ(t)− Fγ,n(t))
+

√
Fγ(t)(1− Fγ,n(t))

dt

+ r2r−1
∫

R\[−k,k]
|t|r−1

√
Fγ,n(t)(1− Fγ(t))

(Fγ,n(t)− Fγ(t))
+

√
Fγ,n(t)(1− Fγ(t))

dt.

(A.19)

By Markov’s inequality, we have for any s≥ 1 and any t ∈R \ {0},

√
Fγ(t)(1− Fγ,n(t))∨

√
Fγ,n(t)(1− Fγ(t))≤

√
EP[|(X, Y )⊤γ|s]∨EPn [|(X, Y )⊤γ|s]

|t|s .

Plugging these bounds into (A.19), we obtain

Wr(Pγ,n,Pγ)
r

≤ r(2k)r sup
t

|Fγ,n(t)− Fγ(t))|

+ r2r−1
∫

R\[−k,k]
|t|r−1−s/2

√
EP[|(X, Y )⊤γ|s]∨EPn [|(X, Y )⊤γ|s] (Fγ(t)− Fγ,n(t))

+

√
Fγ(t)(1− Fγ,n(t))

dt

+ r2r−1
∫

R\[−k,k]
r|t|r−1−s/2

√
EP[|(X,Y)⊤γ|s]∨EPn [|(X, Y )⊤γ|s] (Fγ,n(t)− Fγ(t))

+

√
Fγ,n(t)(1− Fγ(t))

dt.

(A.20)
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Recall that we have assumed s/2 > r where r ≥ 1. In particular, this means that |t|r−1−s/2 is inte-
grable on R \ [−k, k] and

r2r−1
∫

R\[−k,k]
|t|r−1−s/2 dt=

2rr

s/2− r
kr−s/2.

Taking the supremum over γ and t in (A.20) thus yields the claim.

LEMMA B.5. With probability greater than 1− α we have

sup
(γ,t)∈Rd+1×R

(Fγ(t)− Fγ,n(t))
+

√
Fγ(t)(1− Fγ,n(t))

∨ sup
(γ,t)∈Rd+1×R

(Fγ,n(t)− Fγ(t))
+

√
Fγ,n(t)(1− Fγ(t))

≤ 4

√
log(8/α) + (d+ 2) log(2n+ 1)

n
.

PROOF. We first define

J =
{
1{x⊤γ≤ t}, 1{x⊤γ>t} : (γ, t) ∈Rd+1 ×R

}
⊇H,

where H was defined in Lemma B.3. Considering the cases Fγ,n(t) < 1/2 and Fγ,n(t) ≥ 1/2
separately—noting that e.g. EPn [1{x⊤γ>t}] = 1−EPn [1{x⊤γ≤t}] = 1− Fγ,n(t)—one can check

sup
(γ,t)∈Rd+1×R

(Fγ(t)− Fγ,n(t))
+

√
Fγ(t)(1− Fγ,n(t))

≤ 2

(
sup
f∈J

(EP[f ]−EPn [f ])
+

√
EP[f ]

∨ sup
f∈J

(EPn [f ]−EP[f ])
+

√
EPn [f ]

)
.

(A.21)

By symmetry,

sup
(γ,t)∈Rd+1×R

(Fγ,n(t)− Fγ(t))
+

√
Fγ,n(t)(1− Fγ(t))

≤ 2

(
sup
f∈J

(EP[f ]−EPn [f ])
+

√
EP[f ]

∨ sup
f∈J

(EPn [f ]−EP[f ])
+

√
EPn [f ]

)
.

(A.22)

Concentration for the terms on the right hand side of equations (A.21) and (A.22) is well studied:
indeed, e.g. by [29, Exercises 3.3 & 3.4] we have

P

(
sup
f∈J

EP[f ]−EPn [f ]√
EP[f ]

> ǫ

)
≤ 4SJ (2n)e−nǫ2/4,

P

(
sup
f∈J

EPn [f ]−EP[f ]√
EPn [f ]

> ǫ

)
≤ 4SJ (2n)e−nǫ2/4.

for all ǫ > 0, where SJ (2n) is the shattering coefficient of J . Note that by [29, Theorem 4.1] we have
SJ (2n)≤ 2SH(2n). As the VC-dimension of H is bounded by d+ 2, Sauer’s lemma [29, Theorem
Corollary 4.1] yields

log(SJ (2n))≤ (d+ 2) log(2n+ 1).

The claim follows by solving the above expression for ǫ.

APPENDIX C: ADDITIONAL DERIVATIONS

C.1. Diameter of the support of P in the simulation. Notice that X̃⊤
i β ≥−‖β−‖1, where

equality holds for X̃i that has ones in the entries corresponding to negative values of β, and zeros oth-
erwise. Similarly, X̃⊤

i β ≤ ‖β+‖1. Since Xi = σελX̃i, it follows that infXi
X⊤

i β =−σελ‖β−‖1 and
supXi

X⊤
i β = σελ‖β+‖1. Therefore, Yi ∈ [−σε(λ‖β−‖1+1), σε(λ‖β+‖1+1)]. Then, diameter of

the support equals
√
d(σελ)2 + σ2ε (λ‖β+‖1 + λ‖β−‖1 + 2)2 = σελ

√
d+ (‖β‖1 + 2/λ)2.
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C.2. Derivation of Equation (32). The tuning parameter δn,2 used in the simulation is

δn,2 = n−1/4 ·Csim, where Csim ≡ (q1−α)
1/2 · σελ

(
d+ (‖β‖1 + (2/λ))2

)1/2
.

According to equation (31) it is known that β = 0d×1 is a solution to the
√

LASSO problem if and
only if

(A.23)
‖ 1
n

∑n
i=1Xiyi‖∞√
1
n

∑n
i=1 y

2
i

≤ δn,2 = n−1/4 ·Csim.

Because

Yi =X⊤
i β+ σεεi,

equation (A.23) holds if and only if

(A.24)
‖
(
1
n

∑n
i=1XiX

⊤
i

)
β+ σε√

n
1√
n

∑n
i=1Xiεi‖∞

√
1
n

∑n
i=1 y

2
i

≤ n−1/4 ·Csim.

Because Xi = σελX̃i where X̃i is a d-dimensional vector of independent uniform random variables
over the [0,1], then

1

n

n∑

i=1

XiX
⊤
i

p→ E[XiX
⊤
i ] =

1

3
σ2ελ

2Id,

where we have used that E[X̃2
i,j ] = 1/3 because X̃i,j is a uniform distribution on the [0,1] interval.

The Continuous Mapping Theorem and Central Limit Theorem then imply that

∥∥∥
(
1

n

n∑

i=1

XiX
⊤
i

)
β+

σε√
n

1√
n

n∑

i=1

Xiεi

∥∥∥
∞

p→ 1

3
σ2ελ

2‖β‖∞.

For the denominator,

1

n

n∑

i=1

y2i
p→ E[Y 2

i ] = β⊤E[XiX
⊤
i ]β+ σ2εV(εi) =

1

3
σ2ελ

2β⊤β+ σ2εV(εi),

where we have used the fact that ǫi is mean zero and independent of X̃i. The left-hand side of (A.24)
is thus bounded above with high probability by

(1/3)σ2ελ
2‖β‖∞

√
(1/3)σ2ελ

2
√

β⊤β
=
√
1/3 · σε · λ ·

∥∥∥ β√
β⊤β

∥∥∥
∞
.

This means that the event in (A.23) occurs with high probability if

(A.25)
√
1/3 · σε · λ ·

∥∥∥ β√
β⊤β

∥∥∥
∞

≤ 1

n1/4
Csim.

Using the definition of Csim, the event in (A.25) occurs if and only if

n≤ 9 ·
∥∥∥ β√

β⊤β

∥∥∥
−1/4

∞
(q1−α)

2 ·
(
d+ (‖β‖1 + (2/λ))2

)2
.

Thus, a sample size smaller than the right-hand side of the equation above implies that, with high
probability, β = 0d×1 will be a solution to the

√
LASSO problem.
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C.3. Gaussian distributions with similar prediction errors, but large Wasserstein dis-
tance. Suppose (X, Y ) ∼ Nd+1(0, Id+1). Because (X, Y ) are, by assumption, independent and
have mean zero, the prediction error of any linear predictor X⊤γ equals the variance of Y plus the
variance of X⊤γ; that is

E[(Y −X⊤γ)2] = 1 + ‖γ‖22.
The prediction error scales with ‖γ‖2, so it makes sense to restrict this norm. Let us focus on predictors
for which ‖γ‖2 = 1.

Consider now a random vector (X̃, Ỹ ). Assume X̃=X+V where V ∼Nd(0, σ
2
vId) is an inde-

pendent source of measurement error. Set Ỹ = Y . For any γ such that ‖γ‖= 1:

E

[
(Ỹ − X̃⊤γ)2

]
= 2+ σ2v .

Thus, in this example
(
E

[
(Y −X⊤γ)2

]
−E

[
(Ỹ − X̃⊤γ)2

])
= σ2v .

Consequently, the difference in prediction errors equals σ2v .
Let P denote the distribution of (X, Y ) and, analogously, let P̃ denote the distribution of (X̃, Ỹ ).

The distance between P and P̃ can be considerably large when measured using the standard d-
dimensional Wasserstein metric. In fact, algebra shows that

W2(P, P̃) = (
√
1 + σ2v − 1)d1/2 ,

Thus, when d is large, the standard d-dimensional Wasserstein distance suggests that P and P̃ are very
different from one another. This stands in contrast with the magnitude of the difference in prediction
errors associated to P and P̃ which is equal to σ2v .

In this example, one can further show that if we set ρ(·) = ‖ · ‖1, then

Ŵ2(P, P̃)≤ σv .

Therefore, the example further shows that two distributions can be close in ρ-MSW metric, even
when their standard d-dimensional Wasserstein distance is large.

C.4. Comparison to Proposition 6 and Theorem 4 in [10]. In this section we explain that
there are a few major differences between our bounds for the out-of-sample prediction error and those
provided in [10] (in particular, Proposition 6 and Theorem 4 therein).

First, [10, Proposition 6] assumes that (X, Y ) ∼ P and their result makes reference to an un-
derlying linear regression model Y = XTβ∗ + ǫ, where β∗ := argminβ∈Rd EP[|Y − XTβ|2]
can be interpreted as the population’s best linear predictor. The authors then provide bounds for
EPn [|Y −XTβ∗|2]: the in-sample prediction error at β∗. We emphasize that in our setting we never
focus on generalization bounds that are only valid for β∗. Moreover, since our focus is out-of-sample

prediction error, we are naturally interested in distributions Q that are close, but different, than P (and
also different than Pn).

Second, [10, Theorem 4] states an asymptotic confidence bound for EP[|Y −XTβ∗|2] that is valid
with high probability as n→∞. Our Theorem 5.1 holds for finite n ∈ N, with high probability, and
is uniform in β. In particular, we give generalization bounds for EQ[|Y − XT β̂|2], where β̂ is an
estimator constructed using the training data (in our results, we focus on the estimators that solve (1)).
It is not clear to us how to recover results of this type from [10, Theorem 4], even for n→∞.

It is important to mention that in [10], the regularization parameter is not selected based on the
Wasserstein distance Wr(Pn,P) between the empirical distribution and the true data-generating dis-
tribution. Instead, they consider the distance

Rn(β) =min{WB(Pn,Q) : γ 7→ EQ[|Y −X⊤γ|r] has minimizer β},(A.26)

where WB is a type of Wasserstein-like distance (see [10, eq. (16)]; more discussion below) and
then consider the regularization δ > Rn(β∗), where β∗ (as defined above) is the coefficient of an
underlying linear regression model.
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The work in [10] derives bounds for this distance: [10, Theorem 7 and Remark 1] states that, under
Gaussian additive errors ǫ, an appropriate normalization of X, and if Y = XTβ∗ + ǫ under P (see
beginning of [10, Section 4.2]), then one has

√
Rn(β

∗)≤ π

π− 2

Φ−1(1− α/2d)√
n

,(A.27)

which aligns with recommendations of [6].
As mentioned above, WB is not the standard (d+ 1)-dimensional Wasserstein distance. Instead,

it only allows for fluctuations of the X-values, not the Y -values (see [10, eq. (14)]). In consequence,
a ball in WB around Pn will never contain the true distribution P if Y has a continuous distribution
under P (as all measures in the WB -ball must have the same Y values). This is the reason why no
generalization bounds at deviations from P (analogous to Theorem 5.1 in the main body of the paper)
can be derived from the results of [10].

Lastly, the distribution Q achieving the minimum in (A.26) is usually not P, but can be arbitrarily
far away from P in the usual Wasserstein distance. See [10, Section 1.1.3] for an extended discussion
of Rn(β). In that sense, bounds for Rn(β) are concerned with the recovery of β∗ in the linear model
Y =XTβ∗ + ǫ. In fact, [10] acknowledges that a similar strategy as the one we suggest for selecting
δ, but using the standard Wasserstein metric, would only yield a recommendation of order O(n−1/d);
see their discussion after Theorem 4, p. 848 and [48, Theorem 4].

C.5. Alternative criterion for choosing δ and a new generalization-type bound. As
mentioned in Section C.4, there are a couple of decisive differences between [10] and our results. In
this section, we present a brief discussion of the differences between our recommendation for selecting
δ (which specifically targets out-of-sample performance) and the recommendation in [10]. We show
that if we use the same criterion as in [10], our optimal δ would be upper bounded by their recommen-
dation. As we explain below, this has to do with the fact that our ρ-MSW balls are larger than those
based on the standard Wasserstein metric.

Distributionally robust representation: First, it is worth mentioning that both our paper and [10]
present a distributionally robust representation of the

√
LASSO and related estimators. The key differ-

ence is that we define our class of testing distributions using Ŵr , instead of the Wasserstein metric WB

defined in Section C.4. Recall that [10] take the same testing and training distributions of the outcome
variable; see their Proposition 2, Equation (14), Theorem 1. Thus, to make our results comparable to
them we set σ = 0 and use the notation Ŵr,ρ,0.

Criterion: [10] recommend δ∗n as the 1−α quantile of the profile function Rn(β) defined in (A.26),
and (A.27) holds with probability asymptotically larger than 1− α, as n→∞, see [10, Theorem 7
and Remark 1]. This aligns with the recommendation of [5].

It is important to note that even though Theorem 5 in [10] characterizes the exact asymptotic distri-
bution of nRn(β∗), their recommended tuning parameter is based on a stochastic upper bound for this
distribution (see their Remark 1). Note that using the exact asymptotic distribution presents at least
three complications. First, simulating the quantile of the exact distribution involves solving repeatedly
an optimization problem in Rd that in principle requires estimators of β∗ and the variance of e (solv-
ing these optimization problems could be computationally demanding). Second, the quantiles of the
asymptotic distribution could very well depend on the variance of ǫ, which would mean that the rec-
ommended tuning parameters based on the exact asymptotic distribution need not be pivotal (hence,
deviate from the recommendation of [5]). Third, since the selection of tuning parameters is intended
to “cover” the true parameter β∗, it is difficult to obtain bounds on the out-of-sample prediction error
as the ones we present in Theorems 5.1.

We now consider a modification of the profile function Rn(β) based on the ρ-MSW metric as
follows:

R̃n(β) =min{Ŵr,ρ,0(Pn,Q) : γ 7→ EQ[|Y −X⊤γ|r] has minimizer β} .

If we define by δ̃∗n the 1− α quantile of the modified profile function R̃n(β), the event {Rn(β)≤ z}
is included in the event {R̃n(β)≤ z} because for any Q such that β is a minimizer of γ 7→ EQ[|Y −
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X⊤γ|r] we have that Ŵr,ρ,0(Pn,Q)≤WB(Pn,Q) due to Remark 3. This implies that

P(R̃n(β)≤ z)≥ P(Rn(β)≤ z) ,

which allows us to conclude δ̃∗n ≤ δ∗n. That is, if we were interested in the criterion used in [10] (and not
in the out-of-sample prediction error) we could use our results to recommend a smaller regularization
parameter.

Next, we complement the result in Theorem 5.1 with upper and lower bounds on the out-of-sample
prediction error of linear predictors that solve (1) using their worst-case prediction error in the training
data. To this end, for any given Q and β (which could be data dependent; i.e. β ≡ β(Pn)) define

∆n,r(Q,β) := EQ

[∣∣∣Y −X⊤β
∣∣∣
r]1/r

−


 sup

P̃∈Bδn,r (Pn)

E
P̃

[∣∣∣Y −X⊤β
∣∣∣
r]



1/r

,

where Bδn,r
(Pn) denotes a ball (based on the ρ-MSW metric) of radius δn,r around the empirical

distribution.

COROLLARY C.1. Suppose the conditions of Theorem 3.2 (or 3.1) hold. Consider δn,r defined

in (24) (or (25)). Then, for any ǫ ≥ 0 and Q such that Ŵr(P,Q) ≤ ǫ, with probability greater than

1− 3α, we have for all β

−(2δn,r + ǫ)(1 + ρ(β)))≤∆n,r(Q,β)≤ ǫ(1 + ρ(β)).

In particular, the inequality above holds for β̂ that solve (1).

PROOF. By the proof of Theorem 5.1, there is an event with probability greater than 1− 3α such
that Ŵr(P,Pn)≤ δn,r holds. Conditional on this event, consider first the following derivations,

|∆n,r(Q,β)| ≤ |EQ[|Y −XTβ|r]1/r −EP[|Y −XTβ|r]1/r|︸ ︷︷ ︸
(I)

+ |EP[|Y −XTβ|r]1/r −EPn [|Y −XTβ|r]1/r|︸ ︷︷ ︸
(II)

+ |EPn [|Y −XTβ|r]1/r − sup
P̃∈Bδn,r(Pn)

E
P̃
[|Y −XTβ|r]1/r|

︸ ︷︷ ︸
(III)

.

Note (I) ≤ Ŵr(Q,P)(1+ρ(β))≤ ǫ(1+ρ(β)) by (11), (II) ≤ Ŵr(P,Pn)(1+ρ(β))≤ δn,r(1+ρ(β))
by (11), and (III) ≤ δn,r(1 + ρ(β)) by Theorem 2.1.

Conditional on the same event as above, we now consider the following derivations,

∆n,r(Q,β)
(1)
≤ EQ[|Y −XTβ|r]1/r −EP[|Y −XTβ|r]1/r

(2)
≤ Ŵr(Q,P)(1 + ρ(β))≤ ǫ(1 + ρ(β)),

where (1) holds since Ŵr(P,Pn)≤ δn,r and (2) holds by (11). The claim follows.

APPENDIX D: ADDITIONAL SIMULATIONS

Suppose that the training data consists of n i.i.d. draws from a Gaussian, homoskedastic, linear
regression model. In other words,

Yi =X⊤
i β+ σεεi,

where εi ∼ N (0,1) and Xi ∼ Nd(0, Id), with εi⊥Xi. The parameters controlling the simulation
design are (β, σǫ, d).
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We are interested in comparing the out-of-sample performance of a linear predictor that uses co-
efficients estimated via the

√
LASSO (r = 2), with other popular regularization procedures (Ridge

regression and the LASSO). We use the standard tuning parameter for the
√

LASSO in [6]; namely,

(A.28) δ̃n ≡ (1.1) ·Φ−1
(
1− α

2d

)
· n−1/2,

and we take α= 0.05. For Ridge regression, we use the approximately optimal oracle recommendation
in Corollary 6 of [42].5 For the LASSO, we use the oracle recommendation of [5], which equals δ̃n
multiplied by the unknown parameter σǫ.6

We consider different sizes of the training data ntrain ∈ {2,50,100,150, . . . ,2000}. We set the size
of the testing data to be ntesting = 1000, and we benchmark the performance of each of the regularized
estimators relative to the root mean-squared prediction error of a predictor based on ordinary least-
squares (OLS). When d > ntrain we use the “ridgeless” estimator in [42] as a benchmark.

For the testing data, we consider two different distributions. First, we consider ntesting new draws
from the true data generating process and report results in Figure D.1. Second, we perturb the true
data generating process according to the worst-case distribution derived in Corollary 2.1 with δn equal
to the tuning parameter used by the

√
LASSO and report results in Figure D.2. According to the first

theorem in the paper, the
√

LASSO offers robustness against perturbations of the training data.
The simulation results provide two interesting findings. First, as shown in Figure D.1, when the

testing distribution and the data generating process are the same, the out-of-sample prediction error of
the optimally tuned Ridge, LASSO, and

√
LASSO estimators are larger than the OLS estimator. In this

case, neither of the penalized estimators seem to have any attractive property in terms of out-of-sample
performance. Second, as shown in Figure D.2, the simulation results are markedly different when the
testing distribution and the true data generating process are allowed to differ—and, in particular, the
testing distribution is adversarial—then the OLS estimator has a larger out-of-sample prediction er-
ror in comparison to the penalized estimators. Moreover, the

√
LASSO estimator—with the tuning

parameter recommended by [5]—reports the lowest out-of-sample prediction error among the estima-
tors. Importantly, in this case, the

√
LASSO seems to deliver a clearly superior performance (up to

25%) relative to optimally tuned Ridge and LASSO.
•
√

LASSO vs. LASSO: As we discussed in Section 6, the oracle recommendation for the regulariza-
tion parameter of

√
LASSO (based on our analysis of the ρ-MSW metric) can be more than 10 times

larger than the standard recommendation in [5]. This raises the question of whether the out-of-sample
performance of the LASSO reported in Panel d) of Figure D.2 can be improved by also using a larger
regularization parameter. Lemma 2 in [73]—which shows that the

√
LASSO and the LASSO share an

explicit reparameterization of their solution paths conditional on the data—imply that this is indeed
possible. In fact, [73, Lemma 2] shows that, for each data realization and each possible regularization
parameter for the

√
LASSO, for example δ̃n as in (A.28), one can find a regularization parameter

for the LASSO, denoted by δn,LASSO, such that both the LASSO and the
√

LASSO estimators co-
incide. As a consequence, using δn,LASSO, guarantees that the out-of-sample performance of the two
procedures must coincide.

To investigate this, we consider the same Gaussian, homoskedastic, linear regression model de-
scribed at the beginning of this section. We set d = 100 and set β = (1, . . . ,1)⊤ and σǫ = 1. We
consider different training sizes ntrain ∈ {200,250,300, . . . ,2000}. For each data realization, we im-
plement the formula in [73, Lemma 2] to obtain a new regularization parameter δn,LASSO. For the√

LASSO, we once again use the tuning parameter in [5]. The testing distribution is the worst-case
distribution derived in Corollary 2.1.

Panel a) in Figure D.3 reports the ratio of δn,LASSO relative the oracle regularization parameter for
the LASSO. For each sample size ntrain, the figure reports the average ratio across data realizations.
The figure shows that in order for the LASSO to have the same out-of-sample performance as the√

LASSO, the new regularization parameter needs to be, on average, 10 times larger than the standard
tuning parameter. Panel b) in Figure D.3 confirms that the new regularization parameter indeed aligns
the out-of-sample performance of both procedures.

5In our set-up this equals σǫd/‖β‖2.
6We implement the LASSO using the Matlab function lasso.
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(a) Ridge: d= 10
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(b) LASSO: d= 10
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(c) Ridge: d= 100
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(d) LASSO: d= 100

Fig D.1: Out-of-sample prediction error of the Ridge, LASSO, and
√

LASSO relative to that of the
OLS estimator. The testing data are independently drawn from the same distribution as the training
data. The solid line corresponds to the

√
LASSO with the standard tuning parameter given by (A.28).

The dashed line corresponds to the other estimators (Ridge/LASSO) using their oracle tuning param-
eters. A red vertical line indicates d. α= 0.05, β = (1, . . . ,1)⊤ (vector of d ones), and σε = 1.

• Cross-validated
√

LASSO: As we have discussed, our Theorem 2.1 implies that the
√

LASSO
solves a distributionally robust optimization (DRO) problem: it minimizes the worst-case prediction
error over data distributions that yield similar prediction errors to the training data (which we formally
express as a ball around the empirical distribution using a type of max-sliced Wasserstein metric).
The size of the ball in the DRO formulation is determined by the regularization parameter δn. This
means that larger values of the regularization parameter for

√
LASSO will correspond to a larger set

of distributions under consideration when evaluating the worst-case prediction error.
We now present numerical evidence suggesting that the K-fold cross-validated regularization pa-

rameter for the
√

LASSO tends to be smaller than the standard recommendation given in [5], which
we implement in (A.28).7 Our interpretation of this result is that there will be perturbations of the true
generating process (P), for which the prediction error of the

√
LASSO (tuned as in [5]) will be smaller

than the prediction error of the cross-validated
√

LASSO.

7The K-fold cross-validation regularization parameter is defined as the minimizer of CV (δ) in a given set
∆ of possible values. We use Wu and Wang [80, Algorithm 1, page 212], but with the loss function of the√

LASSO, to define the cross-validation error CV (δ) for a given tuning parameter δ ∈∆. We use ∆= {Cδa
j :

j = 0, . . . ,24} with a= 0.5 and Cδ = 8δ̃n, where δ̃n is as in (A.28).
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(a) Ridge: d= 10
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(b) LASSO: d= 10
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(c) Ridge: d= 100
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(d) LASSO: d= 100

Fig D.2: Out-of-sample prediction error of the Ridge, LASSO, and
√

LASSO relative to that of the
OLS estimator. The testing data are independently drawn from a distribution that is adversarial to the
training data. The solid line corresponds to the

√
LASSO with the standard tuning parameter given by

(A.28). The dashed line corresponds to the other estimators (Ridge/LASSO) using their oracle tuning
parameters. A red vertical line indicates d. α= 0.05, β = (1, . . . ,1)⊤ (vector of d ones), and σε = 1.

Once again, we use the Gaussian, homoskedastic, linear regression model described at the begin-
ning of this section to calculate the regularization (or tuning) parameter for the

√
LASSO based on

5-fold cross-validation. In our exercises, we consider different values for the dimension of the vector
of covariates: d ∈ {2,5,10,20,50,100,150,200,300,400,500}. Figure D.4 reports the average of 500
tuning parameters obtained via cross-validation (where the average is over data realizations, since each
of the cross-validated tuning parameters depends on the data). Figure D.4 also includes the standard
recommendation in [5]—and implemented as in Equation (A.28)—which in our simulations ends up
being much larger than the average tuning parameter based on cross-validation. Let us recall that Sec-
tion 6 already reported that our recommended tuning parameter is larger than the one based on the
standard recommendation of [5].

We make two brief remarks about the simulation results in Figure D.4. First, we note that the
comparison of tuning parameter for

√
LASSO obtained via cross-validation and the tuning parameter

recommended in [5] is consistent with other results in the literature. For instance, as is discussed in
Chetverikov et al. [22, Remark 4.3], the cross-validation tuning parameter for the LASSO is often
smaller than its oracle recommendation.

Second, we think that low values for the tuning parameter of the
√

LASSO obtained via cross-
validation reported in Figure D.4 are consistent with the idea that cross-validation aims to maximize
performance at the true data generating process, P, not some unknown, nearby distribution Q. For
example, note that in Figure D.4 the cross-validated tuning parameter is close to zero when d is lower
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Fig D.3: (a) Ratio of the tuning parameter δn,LASSO to the oracle tuning parameter for the LASSO,

where both the LASSO with δn,LASSO and
√

LASSO with δ̃n coincide. (b) Out-of-sample prediction

error of the LASSO with δn,LASSO (dashed red line) and the
√

LASSO with δ̃n (solid blue line) relative
to that of the OLS estimator. α= 0.05, d= 100, β = (1, . . . ,1)⊤ (vector of d ones) and σε = 1.
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Fig D.4: Tuning parameter δ for the
√

LASSO. The dashed red line corresponds to the stan-
dard tuning parameter given by (A.28), while the solid blue line shows the average of 500
tuning parameters selected via 5-fold cross-validation. α= 0.05 and ntrain = 100.

than or similar to the training sample ntrain = 100. Such a low value of the tuning parameter will make
the cross-validated

√
LASSO very similar to the OLS estimator. And as reported in Figure D.1, when

no perturbations of the true data generating process are considered (and hence, there are no concerns
about genuine out-of-sample performance), then OLS has a better prediction error relative to

√
LASSO

(and other penalized estimators).
•
√

LASSO with our recommended tuning parameter: Finally, we present a new figure, analogous
to Figure D.2, where we compare the out-of-sample performance of two versions of the

√
LASSO

using (i) the tuning parameter given by (28), which is computed using the diameter of the empirical
support of the data as an estimator of diam(supp(P)), and (ii) the tuning parameter given by (A.28),
which is the standard recommendation based on [5].

The results of the simulations are presented in Figure D.5 below. The figure illustrates that the rel-
ative performance of the

√
LASSO estimators—with respect to the OLS estimator—depends on the

testing distribution used to compute out-of-sample prediction error. More concretely, if the testing dis-
tribution is constructed using our Corollary 2.1 (applied to the true data generating process and using
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(a) True DGP: d= 10
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(b) True DGP: d= 100
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(c) Adversarial DGP: d= 10
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(d) Adversarial DGP: d= 100

Fig D.5: Out-of-sample prediction error of the
√

LASSO relative to that of the OLS estimator. The
testing data in (a) and (b) are independently drawn from the same distribution as the training data,
while those in (c) and (d) are independently drawn from a distribution that is adversarial to the training
data. The solid line corresponds to the

√
LASSO with the tuning parameter given by (28), which is

computed using the diameter of the empirical support of the data as an estimator of diam(supp(P)).
The dashed line corresponds to the

√
LASSO with the standard tuning parameter given by (A.28). A

red vertical line indicates d. α= 0.05, β = (1, . . . ,1)⊤ (vector of d ones), and σε = 1.

the recommended tuning parameter), then the
√

LASSO with our recommended tuning parameter has
a better out-of-sample performance than the

√
LASSO with the usual tuning parameter.

Figure D.6 further shows that a feasible version of our recommended tuning parameter, given by
(28) and an estimator of the diameter of the support of the data distribution, is several times larger than
the standard tuning parameter based on [6], given by (A.28).
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Fig D.6: Ratio of the regularization parameter in (28), which is computed using the diameter
of the empirical support of the data as an estimator of diam(supp(P)), to that one in (A.28).
The solid blue line corresponds to d = 10, and the dashed red line corresponds to d = 100.
α= 0.05.
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