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Abstract

In this work, we analyze recent theoretical developments in the representation

learning literature through the lens of a linear Gaussian factor model. First, we

derive sufficient representations—defined as functions of covariates that, upon con-

ditioning, render the outcome variable and covariates independent. Then, we study

the theoretical properties of these representations and establish their asymptotic

invariance; which means the dependence of the representations on the factors’ mea-

surement error vanishes as the dimension of the covariates goes to infinity. Finally,

we use a decision-theoretic approach to understand the extent to which representa-

tions are useful for solving downstream tasks. We show that the conditional mean of

the outcome variable given covariates is an asymptotically invariant and sufficient

representation that can solve any task efficiently, not only prediction.
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1 Introduction

Representation Learning is an active research area in machine learning, see Bengio et al.

(2013) for a highly cited review. A key promise in this literature is the construction of

algorithms that are less dependent on feature engineering and specific domain knowledge.

In this work, we study representations in the context of a linear Gaussian factor

model, where a scalar response variable, yi, and vector-valued covariates, xi ∈ Rk, are

assumed to be both linear functions of normally distributed errors and latent factors

of lower dimension (zi ∈ Rd, d < k). Our motivation is to analyze recent theoret-

ical developments in the representation learning literature—in particular, the recent

information-theoretic framework of Achille and Soatto (2018).

Factor models provide a natural laboratory for exploring representation learning,

as unobserved factors are, in some sense, a useful lower-dimensional representation of

observed data.1 Although linear Gaussian factor models have been extensively studied in

the statistics literature, we think it is valuable to unravel the connections with the recent

theoretical developments in representation learning. Moreover, despite their simplicity,

linear factor models “are sometimes used as building blocks of mixture models . . . or

of larger, deep probabilistic models . . . They also show many of the basic approaches

necessary to building generative models that the more advanced deep models will extend

further.” (see Chapter 13, p. 485 in Bengio et al. (2013) for the original quote). We thus

apply the abstract definitions of representations and their properties given by Achille

and Soatto (2018) to understand what constitutes a good representation in the linear

Gaussian factor model.

The main results in the paper are as follows.

Sufficient Representations in the Linear Gaussian Factor Model. Following the liter-

ature, define a representation z∗i to be a possibly stochastic function of the covariate vec-

tor xi, restricted to be independent of the outcome given covariates. That is, z∗i⊥yi|xi.
The main idea behind this definition is that a representation must be a transformation

of only covariates, and not the outcome variable.

We say that a representation is sufficient if conditioning on it renders the response

variable and the covariates independent; i.e., yi⊥xi|z∗i . The idea here—as in the classical

definition of statistical sufficiency—is that a good representation extracts all relevant

information about the covariates (relative to the outcome variable distribution).

We first show in Part i) of Proposition 1 that the conditional mean of zi given xi, and

any orthogonal rotation of the usual weighted least squares estimator (WLSE) of zi—

treating the factor loadings as known and using only the factor model for the covariates

1See Lawley and Maxwell (1962, 1973) for a classical treatment of the subject and Bartholomew et al.
(2011) for a more recent and comprehensive reference.
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xi—are sufficient representations. These representations are all nonstochastic linear

transformations of covariates and achieve dimensionality reduction, as each of these

representations have dimension strictly less than k. Although these representations are,

to some extent, natural (as they correspond to the typical estimators of the unobserved

factors), we show that the conditional mean of yi given xi is a sufficient representation.

We believe this is an interesting result, as this scalar representation achieves a further

dimensionality reduction relative to the estimators of the latent factors whenever d > 1.

Asymptotic Invariance of Sufficient Representations. In the factor model for xi,

there is an error term—which affects the observed covariates, but is independent of the

outcome variable—that we will call a nuisance. Following Achille and Soatto (2018), we

define a representation to be invariant if the mutual information with the nuisance is

zero, or equivalently if the representation and the nuisance are independent. Invariance

is a desirable property because, intuitively, a random variable that affects the covariates

but not the outcome should not be a part of a good representation.

Part ii) of Proposition 1 shows that conditional mean of zi given xi, any orthogonal

rotation of the WLSE of zi, and the conditional mean of yi given xi are not invariant.

However, Part iii) of Proposition 1 shows that, as the dimension of the covariates goes

to infinity, these representations become asymptotically invariant. Asymptotic invari-

ance means that the mutual information between the nuisance and the representation

converges to zero as k → ∞. Establishing this result requires some standard regularity

conditions on the factor’s model structure, similar to those in Bai and Ng (2006).

Maximally Insensitive, Nonstochastic, Linear, and Sufficient Representations. The

definition of invariance motivates the search for representations that minimize the mu-

tual information between the nuisance and representation. Achille and Soatto (2018)

referred to such representations as maximally insensitive to the nuisance. Proposition

2 shows that the conditional mean of yi given xi is maximally insensitive among the

class of nonstochastic linear sufficient representations. Thus, from the perspective of

sufficiency and invariance, learning a good representation in the linear Gaussian factor

model is quite simple. If k is fixed, the conditional mean of yi given xi is sufficient and

maximally insensitive among sufficient linear representations.

Representations for Solving Decision Problems. The representation learning litera-

ture has also emphasized the need for constructing representations that are useful for

downstream tasks, such as prediction and classification. The hope is to obtain a represen-

tation of covariates that can be used for these and other purposes. Notably, separating

the analysis of features from the analysis of outcomes is quite common in text data anal-

ysis, where, for instance, one can use vector embeddings to represent words or sentences,

before using text for prediction or classification.

In this paper, we formalize the notion of a downstream task using a decision-theoretic
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perspective. We posit an arbitrary loss function (e.g., quadratic loss) involving the

outcome variable and an action that depends on observed covariates. Then, we then

study the extent to which a representation is useful (or not) for solving a particular task.

We formalize this analysis by comparing the smallest expected loss (risk) that would be

achieved using all covariates versus the smallest expected loss that would be achieved

using only the representation.

Proposition 3 shows that in the linear Gaussian factor model the mean of yi|xi
is—under conditions that we shall spell out clearly—useful for solving any task. We

believe this is not an obvious result, as the conditional mean is typically only optimal

for prediction problems under squared loss. Intuitively, we obtain our result by showing

that in the linear Gaussian factor model, the conditional mean of yi given xi contains

all information necessary to recover the conditional distribution of yi|xi. Because the

full conditional distribution is encoded in the representation, any task can be solved

optimally.

Representation Learning Beyond the Linear Gaussian Factor Model. Of course, fac-

tor models used in applied work are more complicated than the simple linear Gaussian

factor model. Therefore, it is important to understand which of the discussed repre-

sentations would still be useful in a more general model. To answer this question, we

consider a mild departure from the full Gaussian model, by allowing the outcome vari-

able to be a more complicated nonlinear function of factors, but maintaining the linear

Gaussian factor structure for covariates. We assume that yi|xi, zi, θ has a distribution

in the exponential family with parameters of the form Ωθ(zi), where Ωθ(·) denotes a

neural network. We chose the model for covariates to remain a linear Gaussian factor

model. The main assumption here is that the outcome and covariates are independent,

conditional on the factors.

Because the model for covariates is still a linear Gaussian factor model, the WLSE

for factors remains an asymptotically invariant representation. Thus, we focus on under-

standing the extent to which such a representation can help a decision maker in solving

a downstream task. Proposition 4 shows that—as k grows large and if we treat the

model’s parameters as known—the WLSE for the factors can be used to evaluate the

expected loss of any action. The key insight is that the expected loss can be computed

using the exponential family distribution but assuming that the unobserved factors are

actually equal to their estimated value.

Outline. The rest of this paper is organized as follows. Section 2 presents the model

and main results. Section 3 provides a decision-theoretic definition of a task and shows

that the mean of yi|xi solves any task. Section 4 discusses the extensions of our main

results.

3



2 Model and Main Results

There is a scalar outcome variable yi, a vector of k covariates xi, and a vector of d latent

features zi (d < k). Consider the linear factor model

yi = α′zi + ui, (1)

xi = β′zi + vi, (2)

where ui

vi

zi

 ∼ N


0

0

0

 ,

σ2
u 0 0

0 Σv 0

0 0 Id


 . (3)

It is further assumed that Σv is diagonal with strictly positive entries, and that βΣ−1
v β′

has rank d. The above model parameterizes the joint distribution of (yi, xi, zi, ui, vi) by

θ ≡ (α, β, σ2
u,Σv). Throughout the paper we use the notation Pθ to refer to the joint

distribution of (yi, xi, zi, ui, vi) when the model’s parameters are equal to θ. Equations

1-2 can be viewed as a restricted version of the diffusion index forecasting model of Stock

and Watson (2002), analyzed in detail by Bai and Ng (2006).

2.1 Sufficient and Invariant Representations

The following definitions of representations are based on Achille and Soatto (2018), but

properly adjusted to account for the parametric nature of the linear Gaussian factor

model.

Definition 1 (Sufficient Representation). We say that z∗i is a representation of xi

at θ if z∗i is a function of xi and

Pθ(z
∗
i |yi, xi) = Pθ(z

∗
i |xi). (4)

The representation is said to be sufficient at θ if the condition

yi⊥xi|z∗i (5)

holds under Pθ.

As explained in the introduction, Equation (4) formalizes the idea that a represen-

tation must be a transformation of only covariates, and not the outcome variable. In

the statistical model given by (1)-(2)-(3), the joint distribution of (yi, xi, z
∗
i ) depends on

θ, so whether or not yi and xi are independent after conditioning on a representation
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z∗i depends on θ. Equation (4) allows for a large class of random variables to serve as

representations of xi.

Not all representations are sufficient, as defined in Equation (5). One interpretation

of sufficiency is that, once a sufficient representation is constructed, it is then possible to

throw away all covariates and retain all relevant information about the outcome variable.

Beyond sufficiency, there are different desirable criteria for representations that have

been discussed in the literature and that could be of interest in specific applications. For

example, fairness of representations (Zemel et al. (2013), Zhao and Gordon (2019a,b)),

privacy (Hamm (2017)), and invariance to some changes in data attributes (Anselmi

et al. (2016), Zhao et al. (2020)).

We focus on representations that are “invariant to nuisances” as defined by Achille

and Soatto (2018), and related to the information bottleneck method Tishby and Za-

slavsky (2015), Tishby et al. (2000). We introduce some additional notation. Let ni

be a random variable defined on the same probability space as (yi, xi, zi, ui, vi). In a

slight abuse of notation, and in order to present Achille and Soatto (2018)’s definition of

nuisance, let Pθ denote the joint distribution of (yi, xi, zi, ui, vi, ni) where θ could include

other parameters in addition to (α, β, σ2
u,Σv).

Definition 2 (Nuisance and Invariance). A random variable ni is a nuisance at θ if

xi ̸⊥ni and yi⊥ni

under Pθ. A representation z∗i is said to be invariant to a nuisance ni if the mutual

information

Iθ(z
∗
i , ni) ≡ KL (Pθ(z

∗
i , ni)||Pθ(z

∗
i )⊗ Pθ(ni)) (6)

equals zero.

The definition of nuisance is quite general, and in principle includes any random

variable ni correlated with xi, and independent of yi. Throughout the rest of the paper

we consider vi (the error term in the factor model for covariates xi) as the nuisance of

interest. Since vi is already part of the statistical model in (1)-(2)-(3), then the joint

distribution of the nuisance and the data is Pθ as defined in Section 2.

A representation is said to be maximally insensitive to nuisance ni—in a class of

representations C—if it minimizes (6) among the representations in C. A representation

is said to be asymptotically invariant under a sequence of parameters {θk}—indexed by

the dimension of the covariates—if Iθk(z
∗
i , ni) → 0 as k → ∞.
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2.2 Representations in the Linear Gaussian Factor Model

Consider the following (nonstochastic) linear representations of xi.

Eθ[yi|xi], Eθ[zi|xi], z∗i ≡ (βΣ−1
v β′)−1βΣ−1

v xi. (7)

The first representation is the conditional mean of yi given xi (assuming the parameter θ

is known). The second one is the conditional mean of the factor zi given xi, also assuming

θ is known.2 Finally, z∗i is the WLSE of zi based on Equation (2) and assuming β is

known (see Anderson (2003), Section 14.7, Equation 1, p. 592).

Proposition 1.

Let Q denote an arbitrary orthogonal matrix of dimension d.

i) In the model given by (1)-(2), Eθ[yi|xi], Eθ[zi|xi], and Qz∗i are sufficient represen-

tations of xi at θ.

ii) The mutual information between these representations and the nuisance vi satisfies

Iθ(Eθ[zi|xi], vi) = Iθ(Qz∗i ; vi) ≥ Iθ(Eθ[yi|xi]; vi) > 0,

for any fixed k, where the first inequality is strict if and only if d > 1.

iii) These sufficient representations are asymptotically invariant to the nuisance vi

under any sequence of parameters for which det(Id + (βkΣ
−1
v,kβ

′
k)

−1) ≤ 1 + o(k) as

k → ∞.

The proof of Proposition 1 is given in Appendix A.1. All results follow from calcu-

lations based on the multivariate normal model. Some comments on Proposition 1.

First, although it is immediate to recognize Eθ[yi|xi], Eθ[zi|xi], and Qz∗i as represen-

tations, it is less evident that such representations are sufficient.

Consider the case of the WLSE of the factors. If Qz∗i provided a noiseless measure of

the factors zi, sufficiency would be verified by definition (as, conditional on the factors,

yi and xi are independent). However, the representation Qz∗i measures zi with error:

Qz∗i = Qzi +Q(βΣ−1
v β′)−1βΣ−1

v vi. (8)

The proof of Proposition 1 in Appendix A.1, verifies that conditioning on Qz∗i makes yi

and xi independent. The derivation crucially exploits the Gaussian nature of the factor

2In the Gaussian factor model, both conditional means are linear functions of the covariates.
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model, although we later discuss how the proof of sufficiency can be extended to a more

general class of models.

Second, Part ii) of Proposition 1 provides a comparison of the representations in

terms of mutual information—which is an information-theoretic measure of dependence—

with nuisance vi. Equation (8) already shows that Qz∗i and vi are not independent, and

the mutual information formula in Proposition 1 further quantifies the dependence.3

Part ii) of Proposition 1 shows that the mutual information between Qz∗i and vi will

equal the mutual information between Eθ[zi|xi] and vi. Both Qz∗i and Eθ[zi|xi] (which
have dimension d) are typically viewed as legitimate estimators of zi (one of them fre-

quentist, and the other one Bayesian).

The representation Eθ[yi|xi] (weakly) dominates the other in terms of mutual infor-

mation. It is already a bit surprising that Eθ[yi|xi] is a sufficient representation (because

this conditional mean cannot be viewed as an estimator of the underlying factors). It

is even more remarkable that such representation is better in terms of invariance to the

nuisance vi.

Third, Part ii) of Proposition 1 also shows that none of the above representations are

invariant to vi. However, Part iii) of Proposition 1 shows that the mutual information

between the representations and vi converges to zero as the dimension of the covariates

goes to infinity. One possible intuition is that, as k → ∞, the measurement error in (8)

vanishes. The result then follows from the independence of vi and zi. To formalize this

result we needed to impose some restrictions on how the parameters of the factor model

change as k increases. One common assumption in the literature—see Assumption B in

Bai and Ng (2006)—is that the factor loadings have a well-defined limit when scaled by

the number of covariates; namely,

k−1βkΣ
−1
v,kβ

′
k → Σβ,

where Σβ is a nonsingular d × d matrix. This assumption, which shall be used later,

implies that

det(Id + (βkΣ
−1
v,kβ

′
k)

−1) → 1,

which allows us to verify the assumptions of Part iii) of Proposition 1.

2.3 Maximally Insensitive Representations

The representation Eθ[yi|xi] is already appealing because it is sufficient, and it has the

lowest possible dimension. In addition, as k → ∞ this representation is asymptotically

invariant. The only limitation is that it is not invariant to nuisance vi for a fixed k.

3In Appendix A.5, Lemma 2 provides a tractable and close form expression for mutual information.
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Is it possible to find a better representation? The following proposition shows this is

impossible, with some qualifications.

Proposition 2: In the model given by (1)-(2), the representation Eθ[yi|xi] is maximally

insensitive to nuisance vi among the class of all nonstochastic, linear, and sufficient rep-

resentations.

The proof of Proposition 2 in Appendix A.2 is constructive. The key argument is

that for any nonstochastic, linear, sufficient representation of dimension p ≥ 1, we can

find a representation of the same dimension and with the same mutual information with

respect to the nuisance, but explicitly contains Eθ[yi|xi] as one of its entries. Intuitively,
this implies that any nonstochastic, linear, and sufficient representation—in a sense—

captures other features of the covariates that are not Eθ[yi|xi]. As a consequence of the

chain rule of conditional mutual information, we can show that the mutual information

with respect to nuisance vi of Eθ[yi|xi] has to be equal or smaller.

An implication of our result is that all nonstochastic, linear, and sufficient represen-

tation of dimension one are proportional to Eθ[yi|xi] and thus have the same mutual

information with respect to vi. This means that all nonstochastic, linear, and sufficient

representations of dimension one are maximally insensitive to nuisance vi.

A representation that is maximally insensitive to nuisance vi in the class of sufficient

representations is useful for two reasons. First, sufficient representations and covariates

xi have the same mutual information with outcome variable yi. Second, nuisance vi

affects only the covariates but not the outcome variable, thus a maximally insensitive

representation minimizes the effect of the nuisance in the representation.

3 Downstream Tasks

Intuitively, a good representation should be useful in downstream tasks, such as pre-

diction. Therefore, it is important to explore the extent to which the representations

discussed in Section 2 are useful for solving decision problems that involve (yi, xi), such

as prediction. In this section, we use standard concepts in decision theory to formalize

the definition of a task and show that, in the model (1)-(2), the conditional mean of yi

given xi solves any task efficiently, in a sense we make precise.

Preliminaries: Following the standard terminology in decision theory, let Pθ de-

note a joint distribution over (yi, xi, zi) ∈ Y × X × Z and let A denote some action

space. We define a loss function in the usual way: L : Y ×A → R.4 In a slight abuse of

4Examples of loss functions are quadratic loss, L(y, a) = (y − a)2, or the check function, L(y, a) =
y(τ − 1{y < 0}).
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terminology, we refer to any (measurable) function a : X → A as a decision algorithm

or simply an algorithm. The expected loss of an algorithm a(·) at θ is referred to as the

risk of a(·) at θ. That is, we define the risk function R(·, ·) as

R(a(·), θ) ≡ Eθ[L(y, a(x))]. (9)

A downstream task (or simply a task) is a tuple:

T ≡ (L,A,Pθ). (10)

An algorithm a(·) is optimal for task T at θ if

R(a(·), θ) ≤ R(a′(·), θ), (11)

for any other algorithm a′(·).

Definition 3: A representation z∗ solves task T at θ if there is an optimal algorithm

a∗—for task T at θ—that depends on x only through the representation.

That is, a representation z∗ solves a task T if we can find an algorithm a(·) that only
uses z∗ as input and has smaller or equal risk than any other algorithm. We further say

that a representation z∗ solves task T efficiently at θ if there is no other representation

of a lower dimension that solves task T at θ.

The law of iterated expectations implies that an optimal algorithm at θ must choose,

for each x, the action that minimizes

Eθ[L(y, a)|x].

Such an expectation depends only on the conditional distribution of yi|xi at θ.

Proposition 3: In the linear Gaussian factor model given by (1)-(2) the representation

Eθ[yi|xi] solves any task T efficiently at θ.

It is well-known that Eθ[yi|xi] is the optimal predictor under quadratic loss. However,

the result in Proposition 3 shows that, for any loss, it is possible to dispense with the

covariates, retain the representation Eθ[yi|xi] and still achieve the smallest possible risk

at θ.

The idea behind the proof is quite simple. In the linear Gaussian factor model the

conditional distribution of yi|xi is characterized by its first two moments, and the second

moment depends only on θ and not on x. Because the representation is the first moment,
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the one-dimensional representation Eθ[yi|xi] has all information about the conditional

distribution of yi|xi. The details are presented in Appendix A.3.

4 Extensions

The main results of this paper have been derived under strong assumptions: a linear

Gaussian factor model for covariates and response variable. In this section, we discuss a

generalization of our main results by allowing a different model for the outcome variable.

In addition, we propose an algorithm to asymptotically solve a downstream task using

an asymptotically invariant representation.

4.1 A More General Model for the Outcome Variable

Just as before, suppose there is a scalar outcome variable yi with support Y, a vector

of k covariates xi, and a vector of d latent features zi (d < k). Consider the model

yi | xi, zi, α, σu ∼ f(yi | zi, α, σu), (12)

xi = β′zi + vi, (13)

where f(yi|zi, α, σu) denotes a density of the form,

h(y, σu) exp([Ωα(zi)yi −Ψ(Ωα(zi))]/a(σu)). (14)

In our notation h(·, ϕ) is a real-valued function parameterized by σu defined on Y, a(·)
is a positive function of σu, and Ψ(·) is a smooth function (usually referred to as the

log-partition function) defined on the real line. The density in (14) is a slight modifi-

cation of Generalized Linear Models described in McCullagh and Nelder (1989) where

Ωα(zi) now plays a role analogous to the natural parameter of the exponential family.5

Throughout this section, we assume the following:

Assumption 1 : Ωα : Rd → R is a Lα-Lipschitz function; i.e.,

|Ωα(z1)− Ωα(z2)| ≤ Lα|z1 − z2|.
5Normal, Logistic, and Poisson models can be captured with conditional densities of the form (14).

See Table 2.1 p. 29 of McCullagh and Nelder (1989)
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We maintain the assumptions(
vi

zi

)
∼ N

((
0

0

)
,

(
Σv 0

0 Id

))
, (15)

yi ⊥ xi | zi, (16)

where Σv is a diagonal matrix with strictly positive entries, and βΣ−1
v β′ has rank

d. Once again, the above model parameterizes the joint distribution of (yi, xi) by

θ ≡ (α, β, σ2
u,Σv). Throughout this section, we shall also assume θ is known.

We now discuss the relation of (12)-(13) with existing related models in the literature.

1. Nonlinear Regression model with Neural Networks: Schmidt-Hieber (2020) recently

analyzed a model of the form

yi = Ωα(zi) + ϵi, ϵi⊥zi, ϵi ∼ N (0, σ2
u),

where zi is observed and Ωα(zi) is a deep neural network. Schmidt-Hieber (2020)

assumed (yi, zi) are observed. In contrast, we assume that zi is a latent factor,

ϵi⊥(xi, zi), and there is a linear factor model for xi.

2. Exponential Family Principal Component Analysis: If we assume that Ωα(zi) =

α′zi, our model becomes the exponential family principal component analysis

model in Collins et al. (2002). Our model assumes that if the latent factors are

known, the covariates xi will not effect the distribution of yi. If we maintain the

linear factor model in (13), the only use of the covariates is their ability to estimate

zi.

4.2 Computing Expected Loss using Representations

Characterizing sufficient and maximally insensitive representations in this model is more

challenging. However, there is a sense in which the WLSE of the factors, z∗i , is still a

useful representation. We would like to argue that the representation can be used

to simplify the computation of the expected loss of a particular action. To see this,

note that for any loss function L(y, a) the optimal algorithm prescribes the action that

minimizes Eθ[L(y, a)|x]. Let fθ(y|x) denote the p.d.f. of the conditional distribution of

y|x according to Pθ, and let Fθ(z|x) denote the c.d.f. of z|x according to Pθ.
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The conditional density of Y given X is a mixture distribution:

fθ(y|x) =

∫
f(y|z, x, α, σu)dFθ(z|x),

=

∫
f(y|z, α, σu)dFθ(z|x),

where the last equality follows from (12). We can show that, as k → ∞, Fθk(z|x),
concentrates around the WLSE of the factor, z∗, which is a linear function of x.6 Thus,

fθk(y|x) ≈ f(y|z = z∗, α, σu).

In this case, the best action at θ can be found by computing expected loss according to

a model in which yi has a distribution as in (14) but evaluated at z∗i . This suggests that

we can use a representation z∗i to compare different actions when solving downstream

tasks, provided the dimension of xi is large. This can be performed by defining an

auxiliary outcome variable y∗i :

y∗i | z∗i , α, σu ∼ f(y∗i | z∗i , α, σu), (17)

where this auxiliary outcome variable formalizes the discussion described above and does

not depend on latent factors, zi. We claim that, under some regularity assumptions,

we can evaluate the performance of different actions in the downstream task using (17)

as k → ∞. We first restrict the set of downstream tasks that we are interested in, by

restricting the loss functions that we are working with.

Assumption 2 : The loss function L(·, a) : Y → [0,+∞) is dominated by a quadratic

polynomial; i.e.,

L(y, a) ≤ c1 + c2 y
2,

where c1, c2 > 0 are constants that could be functions of a.

This assumption allows for quadratic, check, and 0-1 losses.7 Thus, we are interested

in tasks such as prediction, quantile estimation, and classification.

We further require some control on the moments of y|x. Because of (14), all mo-

ments of y|z will exist. However, the distribution of y|x is a mixture distribution of

y|z and z. Consequently, we need to be able to integrate over the moments of y|z. We

achieve this by requiring that the tails of y|z have polynomial decline and is a function

6In fact, the simple decomposition for fθ(y|x) suggests that Eθ[zi|xi] is still a sufficient representation,
despite having a more complicated model for the outcome variable. The reason is that Fθ(z|x) only
depends on covariates through Eθ[zi|xi].

7The quadratic function, (y− a)2 ≤ 2y2 + 2a2, and the check function, y(a− 1y<0) ≤ 0.5max{a, 1−
a}y2 + 0.5max{a, 1− a}, satisfy Assumption 2.
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of the parameter Ωα(z):

Assumption 3: The exponential family satisfies the following regularity condition,

Pθ[|y| ≥ t | z, α, σu] ≤ t−4(c3 + c4 exp(c5|Ωα(z)|)),

for any z and t > 0, where c3, c4, and c5 are nonnegative constants.8

Proposition 4: Suppose Assumptions 1-3 hold. Consider evaluating the expected loss

of an action a given some value of the k-dimensional covariates x. Suppose that as

k → ∞ the parameters of the model and covariates satisfy

βΣ−1
v β′/k → Σβ︸︷︷︸

d×d

and βΣ−1
v x/k → µβ︸︷︷︸

d×1

,

where Σβ is nonsingular. Then, the difference∫
L(y, a)f(y | x, α, σu)dy︸ ︷︷ ︸

Eθk
[L(y,a)|x]

−
∫

L(y∗, a)f(y∗ | z∗i (x), α, σu)dy∗︸ ︷︷ ︸
expected loss for the auxiliary model

,

(18)

goes to zero, as k → ∞.

The key insight of this proposition is that the expected loss can be computed using

the exponential family distribution but assuming that the unobserved factors are equal

to their estimated values, which are given by the representation. Details are presented

in Appendix A.4.

Proposition 4 was derived for a fixed action a and known parameters θ. However, it

suggests a strategy for solving downstream tasks when the dimension of xi is large.

Consider the following approach:

1. Estimate β from the linear factor model for xi.

2. Compute the feasible version of z∗i , given by ẑ∗i ≡ (β̂Σ̂vβ̂
′)−1β̂Σ̂vxi.

3. Treat ẑ∗i as zi and estimate the parameters α and σu in the exponential family

model.

8This assumption is satisfied for Normal, Logistic and Poisson models, for example.
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4. Pick the action that minimizes the expected loss according to

y∗i | ẑ∗i , α̂, σ̂u ∼ f(y∗i | ẑ∗i , α̂, σ̂u), (19)

In the case of prediction, predict using Ψ′(Ωα̂(ẑ
∗
i ))

These four steps seem to generalize the forecasting algorithm of Stock and Watson

(2002) and the ‘unsupervised pretraining’ strategy described in Chapter 15 of Goodfellow

et al. (2016).

5 Conclusion

In this paper, we analyzed recent theoretical developments in the representation learning

literature in the context of a linear Gaussian factor model. In particular, we applied

the definitions of representations in Achille and Soatto (2018) and properties studied

therein to search for good representation in the linear Gaussian factor model.

We showed that Eθ[yi|xi], Eθ[zi|xi], and any orthogonal rotation of the usual WLSE

of zi are sufficient representations of xi at θ. These representations are not invariant,

but we showed they are asymptotically invariant as the dimension of the covariate vector

goes to infinity.

We also showed that Eθ[yi|xi] is maximally insensitive to nuisance vi; among the

class of all nonstochastic, linear, and sufficient representations. In addition, we showed

that this representation can be used to solve any task efficiently, not only prediction.

Our definition of a task was decision-theoretic based: we defined a task using a loss

function and an action space.

Finally, we considered an extension of the linear Gaussian factor model allowing

for a more complicated distribution of the outcome variable conditional on the factors.

Our framework allowed us to suggest a simple approach to use the WLSE of the latent

factors, zi, to compare different actions that are relevant for a downstream task. Our

approach can be viewed as a generalization of the forecasting algorithm of Stock and

Watson (2002) and the ‘unsupervised pretraining’ strategy described in Chapter 15 of

Goodfellow et al. (2016).
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A Proofs of Main Results

A.1 Proof of Proposition 1

The proof of this proposition has three parts as was discussed in the main text. First,

we will prove that Eθ[yi | xi], Eθ[zi | xi] and Qz∗i are sufficient representations. Second,

we will compute the mutual information with respect to the nuisance vi. And third, we

will prove that these representation are asymptotically invariant.

Part i): The results on multivariate normal distribution (see Chapter 3 in Bartholomew

et al. (2011)) show

Eθ[yi|xi] = α′βΣ−1
x xi and Eθ[zi|xi] = βΣ−1

x xi ,

where Σx ≡ Σv +β′β. Define by A1 ≡ α′βΣ−1
x , A2 ≡ βΣ−1

x and A3 ≡ (βΣ−1
v β′)−1βΣ−1

v .

This means that we can write the three representations as deterministic linear represen-

tations of x:

Eθ[yi | xi] = A1x, Eθ[zi | xi] = A2x and z∗i = A3x

By Lemma 1 in Appendix A.5, we conclude that these three representation are sufficient

representations since we can verify that inverse matrix of AjΣxA
′
j exists and

ΣxA
′
j(AjΣxA

′
j)

−1Ajβ
′α = β′α,

for j = 1, 2, 3.

Part ii): By Lemma 2 in Appendix A.5, we knows that for any ẑi ≡ Axi such that the

inverse of matrix (AΣxA
′)−1 and Aβ′βA′ are well-defined, then the mutual information

between ẑi and vi is

Iθ(ẑi; v) =
1

2
ln
( det(AΣxA

′)

det(Aβ′βA′)

)
.

By part i), we know that the representations in this proposition are deterministic

and linear. Also we can verify that Ajβ
′βA′

j has inverse for j = 1, 2, 3. Then, algebra

shows

Iθ(Eθ[yi | xi]; vi) =
1

2
ln

(
α′(Id − (Id +Ψ)−1)α

α′(Id − (Id +Ψ)−1)2α

)
,

Iθ(Eθ[zi | xi]; vi) =
1

2
ln

(
1

det(Id − (Id +Ψ)−1)

)
,

Iθ(z
∗
i ; vi) =

1

2
ln

(
det(Id +Ψ)

det(Ψ)

)
,
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where Ψ = βΣ−1
v β′.

To conclude the comparison of the representations in terms of mutual information

with the nuisance vi, observes that I(Eθ[zi | xi]; vi) = Iθ(ẑi; vi) is equivalent to prove

det(Id +Ψ)

det(Ψ)
=

1

det(Id − (Id +Ψ)−1)
,

which is true by algebra manipulation.

To prove I(z∗i ; vi) ≥ Iθ(Eθ[yi | xi]; vi), denote by λ1 ≤ ... ≤ λd the eigenvalues of

Id− (Id+Ψ)−1 and by w1, ..., wd the associated eigenvectors. An important observation

is that all these eigenvalues are lower than one and we can use them compute I(z∗i ; vi)

and I(Eθ[yi | xi]; vi). In particular, we have

1

det(Id − (Id +Ψ)−1)
=

1

λ1...λd
,

and if we write α =
∑d

m=1 amwm using the eigenvectors wi, we have

α′(Id − (Id +Ψ)−1)α

α′(Id − (Id +Ψ)−1)2α
=

∑d
m=1 a

2
mλm∑d

m=1 a
2
mλ2

m

This implies that I(z∗2 ; v) ≥ Iθ(z
∗
3 ; v) since λ’s are lower than one, where equality only

holds if d = 1.

Part iii): By part ii), it will be sufficient to prove that

lim
k→∞

Iθ(z
∗
i ; vi) = 0,

to guarantee that the three representations are asymptotically invariant. By part 2, we

have

Iθ(z
∗
i ; vi) =

1

2
ln

(
det(Id +Ψ)

det(Ψ)

)
=

1

2
ln
(
det(Id +Ψ−1)

)
,

and by assumption det(Id +Ψ−1) → 1 as k → ∞. This concludes our proof.

A.2 Proof of Proposition 2

Case 1: p > 1. Suppose ẑi = Axi is a deterministic linear sufficient representation of

dimension p, where A ∈ Rp×k and p < k. We want to prove

Iθ(ẑi; vi) ≥ Iθ(Eθ[yi|xi]; vi)

where Eθ[yi|xi] = α′βΣ−1
x x is the conditional mean of yi given xi and Σx ≡ Σv +

β′β. By Proposition 1, we know that Eθ[yi|xi] is also a deterministic linear sufficient
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representation. Define A3 ≡ α′βΣ−1
x .

By Lemma 1 in Appendix A.5, we know that

ΣxA
′(AΣxA

′)−1Aβ′α = β′α

and

ΣxA
′
3(A3ΣxA

′
3)

−1A3β
′α = β′α.

These two equations imply

A′ (AΣxA
′)−1Aβ′α︸ ︷︷ ︸
p×1

= A′
3 (A3ΣxA

′
3)

−1A3β
′α︸ ︷︷ ︸

1×1

,

and this is equivalent to

Q0︸︷︷︸
1×p

A︸︷︷︸
p×k

= A3︸︷︷︸
1×k

, (20)

where

Q0 ≡
(AΣxA

′)−1Aβ′α

(A3ΣxA′
3)

−1A3β′α
.

Thus, we can construct a (p− 1)× 1 matrix B such that

Q ≡

(
Q0

B

)

is an invertible matrix. Define the new representation of dimension p

z̃i ≡ Q︸︷︷︸
p×p

Axi︸︷︷︸
p×1

.

The new representation is a linear transformation of ẑi. Equation (20) implies

z̃i =

Q0Axi

BAxi︸ ︷︷ ︸
(p−1)×1

 =

(
Eθ[yi|xi]
BAxi

)
.

Thus, the first entry of the new representation is the conditional mean of yi given xi.

By Lemma 2 in Appendix A.5, we have

Iθ(z̃i; vi) =
1

2
ln
( det(QAΣxA

′Q′)

det(QAβ′βA′Q′)

)
.
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Thus, algebra shows that

Iθ(z̃i; vi) =
1

2
ln
( det(Q) det(AΣxA

′) det(Q′)

det(Q) det(Aβ′βA′) det(Q′)

)
,

(as det(MN) = det(M) det(N))

=
1

2
ln
( det(AΣxA

′)

det(Aβ′βA′)

)
,

= Iθ(ẑi; vi).

Thus, we have shown that the mutual information between z̃ and the nuisance v is

the same as the mutual information between ẑi and vi. Note that ẑi was an arbitrary

sufficient representation, and we obtained z̃i from ẑi by transforming the latter to have

the conditional mean of y given x in the first coordinate.

Now, we will prove that I(z̃i; vi) ≥ Iθ(Eθ[yi|xi]; vi). Since z̃′i = [Eθ[yi|xi], x′iA′B′]′,

by chain rule on conditional mutual information we have

Iθ(z̃; vi) = Iθ(Eθ[yi|xi], BAx; vi) = Iθ(Eθ[yi|xi]; vi) + I(BAx; v | Eθ[yi|xi])︸ ︷︷ ︸
≥0

≥ Iθ(Eθ[yi|xi]; vi).

Then, we conclude the conditional mean of yi given xi is maximally insensitive to vi

(among all linear deterministic representations); i.e.,

Iθ(ẑi; vi) = Iθ(z̃i; vi) ≥ Iθ(Eθ[yi|xi]; vi).

Case 2: p = 1. By Lemma 1 in Appendix A.5, we have

ΣxA
′ (AΣxA

′)−1Aβ′α︸ ︷︷ ︸
1×1

= β′α

This implies

ẑi = Axi = γα′βΣ−1
x xi = γEθ[yi|xi]

where γ = (AΣxA
′)−1Aβ′α ∈ R − {0}. It follows that I(ẑi, vi) = Iθ(Eθ[yi|xi], vi).

Thus, deterministic linear sufficient representation of dimension one are also maximally

invariance.

A.3 Proof of Proposition 3

The proof of this proposition has three main observations. First, under our model (1)-

(2)-(3) the distribution y|x at a parameter value θ is a Gaussian distribution. Second,

in the Gaussian model Vθ(y | x) does not depend on x (denote this variance simply as
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Vθ). Finally, we show how we can solve any task T = (L,A,P) at θ.

Note first that for any action a ∈ A we can compute Eθ[L(y, a) | x] using the rep-

resentation Eθ[y | x]. We do this simply by computing the average loss using the dis-

tribution N(Eθ[y|x], Vθ), which only depends on x through Eθ[y|x]. Because we can

compute the expected loss for any action, we can solve the following minimization prob-

lem mina∈A Eθ[L(y, a) | x]. Denote by a(x) the minimizer. Note that, by construction,

for any x, x′ such that Eθ[y|x] = Eθ[y|x′], then a(x) = a(x′). This means that a(·)
depends on x only through the representation Eθ[y|x], or equivalently we can say the

representation solves the task as in Definition 3.

This concludes the proof of this proposition.

A.4 Proof of Proposition 4

The conditional distribution of the outcome variable to the covariates, yi|xi,k ∼ f(yi|xi,k),
is expressed as

f(y | x) ≡
∫

f(y | x, z)ϕ(z | µk(x),Σk(x)) dz,

where µk(x) ≡ βΣ−1
x x and Σk(x) ≡ Id − βΣ−1

x β′ are the posterior mean and variances.

Since yi ⊥ xi | zi, we can write f(y | z, α, σu) instead of f(y | x, z). This give us

f(y | x) =
∫

f(y | z, α, σu)ϕ(z | µk(x),Σk(x)) dz.

We break the proof of in two main parts. The first part proves that∫
L(y, a)

∫
f(y | z, α, σu)ϕ(z | µk(x),Σk(x)) dzdy (21)

converges to ∫
L(y, a)f(y | z0, α, σu)dy, (22)

as k → ∞, and where z0 ≡ Σ−1
β µβ. In the second part, we prove that∫
L(y, a)f(y | z∗i (xi,k), α, σu)dy (23)

is also converging to equation (22). These two main parts implies (18).

Proof of Part 1 : In equation (21) all the terms in the integrals are positive. By

Tonelli’s Theorem we can change the order of the integrals. This implies that equation

(21) is equal to ∫ ∫
L(y, a)f(y | z, α, σu)ϕ(z | µk(x),Σk(x)) dzdy. (24)
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Step 1: Replace z = µk(x) + Σ
1/2
k (x)w in equation (24) to obtain∫ ∫

L(y, a)f(y | µk(w), α, σu)ϕ(w | 0, Id) dwdy, (25)

where µk(w) ≡ µk(x) + Σ
1/2
k (x)w. Equation (22) can be written as∫ ∫
L(y, a)f(y | z0, α, σu)ϕ(w | 0, Id) dwdy. (26)

Algebra shows that µk(x) = z∗i (xi,k) + O(k−1) and Σk(x) = (βΣ−1
v β′/k)O(k−1). By

assumptions of the proposition, we have z∗i → Σ−1
β µβ = z0 as k → ∞. This implies that

for a given w and y, we have

µk(w) = µk(x) + Σ
1/2
k (x)w → z0 as k → ∞.

Thus, we can expected that equation (25) converge to (26) since

f(yi | zi, α, σu) = h(y, σu) exp([Ωα(zi)yi −Ψ(Ωα(zi))]/a(σu))

is continuous on zi. This follows by the continuity of Ωα(zi) and Ψ(·), which holds under

Assumption 1 and definition of f(·|z, α, σu).

Step 2: By Assumption 2, equation (25) is bounded by∫ ∫
(c1 + c2y

2)f(y | µk(w), α, σu)ϕ(w | 0, Id) dwdy, (27)

and, in a similar way, equation (26) is bounded by∫ ∫
(c1 + c2y

2)f(y | z0, α, σu)ϕ(w | 0, Id) dwdy. (28)

By Exercise 12, p. 133 in Dudley (2002), it will be sufficient to prove that (27) and (28)

are well-defined, and that equation (27) converges to (28). To do this, we can ignore

the constants. Thus, we want to prove that

Eθ[y
2
k] → Eθ[y

2
0] as k → ∞, (29)

where

yk ∼ f(y | µk(w), α, σu)ϕ(w | 0, Id)

and

y0 ∼ f(y | z0, α, σu)ϕ(w | 0, Id)

Since the p.d.f. of yk converges to y0 point-wise, it follows that yk converges weakly to

y0. By the Continuous Mapping Theorem, it follows that y2k converges weakly to y20. By
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Theorem 3.5, p.31 in Billingsley (1999), we only need to prove that {y2k}k is uniformly

integrable to conclude (29).

Step 3: We will prove that supEθ[|yk|3] < +∞, which implies that {y2k}k is uniformly

integrable. For details see equation (3.18), p.31, in Billingsley (1999). Algebra shows

Eθ[|yk|3] = Eθ[|yk|31{|yk|>1}] + Eθ[|yk|31{|yk|≤1}]

=

∫ ∞

1
Pθ[|yk|3 > t]dt+ Pθ[|yk| > 1] + Eθ[|yk|31{|yk|≤1}]

≤
∫ ∞

1
Pθ[|yk| > t1/3]dt+ 2

=

∫ ∞

1

∫
Pθ[|yk| > t1/3 | µk(w), α, σu]ϕ(w | 0, Id)dwdt+ 2.

Since all the terms are positive, we can apply Tonelli’s Theorem and change the order

of the integrals. This implies

Eθ[|yk|3] ≤
∫ ∫ ∞

1
Pθ[|yk| > t1/3 | µk(w), α, σu]dtϕ(w | 0, Id)dw + 2,

and by Assumption 3, this is lower than∫ ∫ ∞

1
t−4/3

(
c3 + c4 exp(c5|Ωα(µk(w))|)

)
dt ϕ(w | 0, Id)dw + 2.

Algebra shows that expression above is equal to∫
3
(
c3 + c4 exp(c5|Ωα(µk(w))|)

)
ϕ(w | 0, Id)dw + 2,

where exp(c5|Ωα(µk(w))|) can be written as

exp(c5|Ωα(µk(w))− Ωα(z0) + Ωα(z0)|),

which is lower than

exp(c5|Ωα(µk(w))− Ωα(z0)|+ |Ωα(z0)|).

By Assumption 1, the previous expression is lower than

exp(c5Kα|µk(w)− z0|+ c5|Ωα(z0)|),

where µk(w)− z0 = µk(x)− z0 +Σ
1/2
k (x)w. This implies that

exp(c5|Ωα(µk(w))|) ≤ Ck exp(c5Kα|Σ1/2
k (x)w|),
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where Ck ≡ exp(c5Kα|µk(x)− z0|+ c5|Ωα(z0)|).

All this algebra implies,

Eθ[|yk|3] ≤
∫

3(c3 + c4Ck exp(c5Kα|Σ1/2
k (x)w|))ϕ(w | 0, Id) dw + 2, (30)

which can be bounded using the Moment Generation Function of the Normal distribu-

tion. To see this, define by Γk ≡ ||Σ1/2
k (x)|| the matrix norm. This implies

|Σ1/2
k (x)w| ≤ Γk|w| ≤ ΓkΣ

d
j=1|wj |,

where the second inequality comes from triangle inequality or algebra. Using this, we

have that (30) is lower than∫
3(c3 + c4Ck exp(c5KαΓkΣ

d
j=1|wj |))ϕ(w | 0, Id) dw + 2.

By definition, Ck converges to exp(c5|Ωα(z0)|), thus is uniformly bounded. Then, it will

be sufficient to prove that∫
exp(c5KαΓkΣ

d
j=1|wj |)ϕ(w | 0, Id) dw

is uniformly bounded. To see that, observe that this expression can be written as

d∏
j=1

∫
exp(c5KαΓk|w|)ϕ(w | 0, 1) dw,

which is lower that

d∏
j=1

∫
(exp(−c5KαΓkw) + exp(c5KαΓkw))ϕ(w | 0, 1) dw.

Define by Mϕ(t) ≡
∫
exp(tw)ϕ(w | 0, 1) dw the Moment Generation Function. Then, we

have

Eθ[|yk|3] ≤ 3c3 + 3c4Ck

{
Mϕ(−c5KαΓk) +Mϕ(c5KαΓk)

}d
+ 2. (31)

By continuity, we know that Γk → 0 as k → ∞. This implies that equation (31) is

uniformly bounded. This complete the proof of uniformly integrability.

Proof of Part 2 : In a similar way as we did for part 1 in step 2, it will be sufficient

to prove that ∫
y2f(y | z∗i (xi,k), α, σu)dy →

∫
y2f(y | z0, α, σu)dy.
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To conclude this, as we did for part 1 in step 3, it will be sufficient to prove that∫
|y|3f(y | z∗i (xi,k), α, σu)dy (32)

is uniformly bounded. By Assumption 3, and following step 3 above, this expression is

lower than

3c3 + 3c4 exp(c5|Ωα(z
∗
i (xi,k))|) + 2,

which converges to

3c3 + 3c4 exp(c5|Ωα(z0)|) + 2.

This proves that (32) is uniformly bounded. This complete the proof.

A.5 Technical Lemmas

In this section, we present two technical lemmas to study the deterministic linear repre-

sentations and its relations with sufficiency concept and to compute mutual information

with the nuisance vi. The derivation of these results use basic algebraic manipulation

based on the multivariate normal model.

Lemma 1: Let ẑi be a deterministic linear representation of xi,

ẑi ≡ A︸︷︷︸
p×k

xi︸︷︷︸
k×1

.

Suppose the inverse of Eθ[ẑiẑ
′
i] exists. Then, ẑi is a sufficient representation of xi at θ if

and only if A solves the Sufficient Representation Equation (SRE):

ΣxA
′(AΣxA

′)−1Aβ′α = β′α, (33)

where Σx ≡ Σv︸︷︷︸
k×k

+β′β.

Proof. There are two parts:

Part I: Suppose A solves SRE. We will prove that ẑi = Axi is a sufficient representation

of xi, i.e. yi⊥xi | ẑi. First observe thatxi

yi

ẑi

 ∼ N


0

0

0

 ,

 Σx β′α ΣxA
′

α′β Σy α′βA′

AΣx Aβ′α AΣxA
′


 .

where Σx = Σv + β′β, Σy = σ2
u + α′α and Eθ[ẑiẑ

′
i] = AΣxA

′. Since the vector [xi y
′
i ẑ

′
i]
′
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is Gaussian, it follows that (
xi

yi

)
| ẑi ∼ N

(
µ,Σ

)
,

where µ = Σ12Σ
−1
2 ẑi and Σ = Σ1 − Σ12Σ

−1
2 Σ21. Here, Σ2 = AΣxA

′ has an inverse

matrix by assumption and

Σ1 =

(
Σx β′α

α′β Σy

)
, and Σ12 =

(
ΣxA

′

α′βA′

)
= Σ′

21 .

Define

Σ12Σ
−1
2 Σ21 =

(
Σ1 Σ12

Σ21 Σ2

)
.

Algebra shows

Σ1 = ΣvA
′Σ−1

2 AΣx + β′βA′Σ−1
2 AΣx ,

Σ12 = ΣxA
′Σ−1

2 Aβ′α ,

Σ21 = α′βA′Σ−1
2 AΣx ,

Σ2 = α′βA′Σ−1
2 Aβ′α .

Since A solve SRE and Σ2 = AΣxA
′, it follows that Σ12 = β′α (ADD algebra). This

implies that correlation between xi | ẑi and yi | ẑi is zero, which proves that yi⊥xi | ẑi
since (yix

′
i)
′ | ẑi is Gaussian.

Part II: Suppose that ẑi = Axi is a sufficient representation of xi. This implies yi⊥xi |ẑi,
in particular correlation between xi | ẑi and yi | ẑi is zero. This implies that Σ12 = β′α.

Since Σ2 = AΣxA
′ we have

ΣxA
′(AΣxA

′)−1Aβ′α = β′α ,

which is the Sufficient Representation Equation, then A solves SRE.

Lemma 2 : Suppose ẑi = Axi is a deterministic linear representation of dimension p

and vi is the noise in the factor model for the covariates xi. Assume in addition that

the inverse of Eθ[ẑiẑ
′
i] and Aβ′βA′ exists, in particular that p < k. Then, the mutual

information between ẑi and vi is

Iθ(ẑi; v) =
1

2
ln
( det(AΣxA

′)

det(Aβ′βA′)

)
> 0,

where Σx ≡ Σv + β′β.
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Proof. Since xi = β′zi + vi, where zi⊥vi, and ẑi = Ax, then(
ẑi

v

)
∼ N

((
0

0

)
,

(
AΣxA

′ AΣv

ΣvA
′ Σv

))
.

To compute the mutual information between ẑi = Axi and vi, we need to calculate the

Kullback-Leibler divergence between the multivariate normal distribution defined above

and the following multivariate normal distribution (assuming no correlation between ẑi

and vi):

N

((
0

0

)
,

(
AΣxA

′ 0

0 Σv

))
.

By assumption, the inverse of both Eθ[ẑẑ
′] = AΣxA

′ and Σv exists. By Proposition 1

in Contreras-Reyes and Arellano-Valle (2012), the Kullback-Leibler divergence between

these two multivariate normal distributions is

1

2

{
ln

(
det(Ω2)

det(Ω1)

)}
,

where

Ω1 =

(
AΣxA

′ AΣv

ΣvA
′ Σv

)
and Ω2 =

(
AΣxA

′ 0

0 Σv

)
.

Since the inverse of both AΣxA
′ and Σv exists by assumption, Theorem 2 in Silvester

(2000) implies that

det(Ω1) =det(Σv) det(AΣxA
′ −AΣvA

′)

=det(Σv) det(Aβ
′βA′)

(since Σx = Σv + β′β)

det(Ω2) =det(Σv) det(AΣxA
′) .

It follows that

Iθ(ẑi; v) =
1

2

{
ln

(
det(Ω2)

det(Ω1)

)}
=
1

2

{
ln

(
det(Σv) det(AΣxA

′)

det(Σv) det(Aβ′βA′)

)}
=
1

2

{
ln

(
det(AΣxA

′)

det(Aβ′βA′)

)}
.

which is the close form expression of this lemma.

To conclude that mutual information between ẑi and vi is positive, let us use the

following the general fact. Mutual information of two random variables is zero if and
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only if these random variables are independent. Since ẑi = g(β′zi+ vi) and vi both have

in common vi, it follows that they are not independent. This implies I(ẑi, vi) > 0.
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