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Abstract

A promise of representation learning—an active research area in machine

learning—is that algorithms will, one day, learn to extract the most useful

information from modern data sources, such as videos, images, or text. In

this work, we analyze recent theoretical developments in the representation

learning literature through the lens of a linear Gaussian factor model. First,

we derive sufficient representations—defined as functions of covariates that,

upon conditioning, render the outcome variable and covariates independent.

Then, we study the theoretical properties of these representations and es-

tablish their asymptotic invariance; which means the dependence of the

representations on the factors’ measurement error vanishes as the dimen-

sion of the covariates goes to infinity. Finally, we use a decision-theoretic

approach to understand the extent to which representations are useful for

solving downstream tasks. We show that the conditional mean of the out-

come variable given covariates is an asymptotically invariant and sufficient

representation that can solve any task efficiently, not only prediction
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1 Introduction

Representation Learning is an active research area in machine learning, see Bengio

et al. (2013) for a highly cited review. A key promise in this literature is the

construction of algorithms that are less dependent on feature engineering and

specific domain knowledge, thereby reducing the costs of data preprocessing.

In this work, we study representations in the context of a linear Gaussian factor

model, where a scalar response variable, yi, and vector-valued covariates, xi ∈ Rk,

are assumed to be both linear functions of normally distributed errors and latent

factors of lower dimension (zi ∈ Rd, d < k). Our motivation is to analyze recent

theoretical developments in the representation learning literature—in particular,

the recent information-theoretic framework of Achille and Soatto (2018).

Factor models (Lawley and Maxwell, 1962, 1973) provide a natural laboratory

for exploring representation learning, as unobserved factors are, in some sense, a

useful lower-dimensional representation of observed data. We apply the abstract

definitions of representations and their properties given by Achille and Soatto

(2018) to understand what constitutes a good representation in the linear Gaussian

factor model. The main results in the paper are as follows.

Sufficient Representations in the Linear Gaussian Factor Model. Following the

literature, define a representation z∗i to be a possibly stochastic function of the

covariate vector xi, restricted to be independent of the outcome given covariates.

That is, z∗i⊥yi|xi. The main idea behind this definition is that a representation

must be a transformation of only covariates, and not the outcome variable.

We say that a representation is sufficient if conditioning on it renders the

response variable and the covariates independent; i.e., yi⊥xi|z∗i . The idea here—as

in the classical definition of statistical sufficiency—is that a good representation

extracts all relevant information about the covariates (relative to the outcome

variable distribution).

We first show in Part i) of Proposition 1 that the conditional mean of zi

given xi, and any orthogonal rotation of the usual weighted least squares esti-

mator (WLSE) of zi—treating the factor loadings as known and using only the

factor model for the covariates xi—are sufficient representations. These repre-

sentations are all nonstochastic linear transformations of covariates and achieve

dimensionality reduction, as each of these representations have dimension strictly

less than k. Although these representations are, to some extent, natural (as they
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correspond to the typical estimators of the unobserved factors), we show that the

conditional mean of yi given xi is a sufficient representation. We believe this is an

interesting result, as this scalar representation achieves a further dimensionality

reduction relative to the estimators of the latent factors whenever d > 1.

Asymptotic Invariance of Sufficient Representations. In the factor model for xi,

there is an error term—which affects the observed covariates, but is independent of

the outcome variable—that we will call a nuisance. Following Achille and Soatto

(2018), we define a representation to be invariant if the mutual information with

the nuisance is zero. Invariance is a desirable property because, intuitively, a

random variable that affects the covariates but not the outcome should not be a

part of a good representation.

Part ii) of Proposition 1 shows that the abovementioned representations are

not invariant. However, Part iii) of Proposition 1 shows that, as the dimension

of the covariates goes to infinity, the representations become asymptotically in-

variant. Asymptotic invariance means that the mutual information between the

nuisance and the representation converges to zero as k → ∞. Establishing this re-

sult requires some standard regularity conditions on the factor’s model structure,

similar to those in Bai and Ng (2006).

Maximally Insensitive Nonstochastic, Linear, and Sufficient Representations.

The definition of invariance motivates the search for representations that minimize

the mutual information between the nuisance and representation. Achille and

Soatto (2018) referred to such representations as maximally insensitive to the

nuisance. Proposition 2 shows that the conditional mean of yi given xi is maximally

insensitive among the class of nonstochastic linear sufficient representations. Thus,

from the perspective of sufficiency and invariance, learning a good representation

in the linear Gaussian factor model is quite simple. If k is fixed, the conditional

mean of yi given xi is sufficient and maximally insensitive among sufficient linear

representations.

Representations for Solving Decision Problems. The representation learning

literature has also emphasized the need for constructing representations that are

useful for downstream tasks, such as prediction and classification. The hope is to

obtain a representation of covariates that can be used for these and other purposes.

Notably, separating the analysis of features from the analysis of outcomes is quite

common in text data analysis, where, for instance, one can use vector embeddings

to represent words or sentences, before using text for prediction or classification.
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In this paper, we formalize the notion of a downstream task using a decision-

theoretic perspective. We posit an arbitrary loss function (e.g., quadratic loss)

involving the outcome variable and an action that depends on observed covariates.

Then, we then study the extent to which a representation is useful (or not) for

solving a particular task. We formalize this analysis by comparing the smallest

expected loss (risk) that would be achieved using all covariates versus the smallest

expected loss that would be achieved using only the representation.

Proposition 3 shows that in the linear Gaussian factor model the mean of

yi|xi is—under conditions that we shall spell out clearly—useful for solving any

task. We believe this is not an obvious result, as the conditional mean is typically

only optimal for prediction problems under squared loss. Intuitively, we obtain

our result by showing that in the linear Gaussian factor model, the conditional

mean of yi given xi contains all information necessary to recover the conditional

distribution of yi|xi. Because the full conditional distribution is encoded in the

representation, any task can be solved optimally.

Representation Learning Beyond the Linear Gaussian Factor Model. Of course,

factor models used in applied work are more complicated than the simple linear

Gaussian factor model. Therefore, it is important to understand which of the

discussed representations would still be useful in a more general model. To answer

this question, we consider a mild departure from the full Gaussian model, by

allowing the outcome variable to be a more complicated nonlinear function of

factors, but maintaining the linear Gaussian factor structure for covariates. We

assume that yi|xi, zi, θ has a distribution in the exponential family with parameters

of the form Ωθ(zi), where Ωθ(·) denotes a neural network. We chose the model for

covariates to remain a linear Gaussian factor model. The main assumption here

is that the outcome and covariates are independent, conditional on the factors.

Our suggested framework relates to several existing models. First, the non-

parametric regression model based on deep neural networks in Schmidt-Hieber

(2020). The difference between this model and ours is that our regression model is

defined in terms of the latent factors and is augmented with a linear factor model

for covariates. Second, the exponential Principal Component Analysis of Collins

et al. (2002) that restricts Ωθ(·) to be a linear function of the factors. Third, the

Deep Latent Gaussian model of Rezende et al. (2014) where, compared with their

general model, we work with only one layer of Gaussian latent variables. Fourth,

the Deep Latent Variables models of Mattei and Frellsen (2018), but we restrict

yi|zi to have a distribution in the exponential family, as opposed to any arbitrary
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distribution.

Because the model for covariates is still a linear Gaussian factor model, the

WLSE for factors remains an asymptotically invariant representation. Thus, we

focus on understanding the extent to which such a representation can help a

decision maker in solving a downstream task. Proposition 4 shows that—as k

grows large and if we treat the model’s parameters as known—the WLSE for the

factors can be used to evaluate the expected loss of any action. The key insight is

that the expected loss can be computed using the exponential family distribution

but assuming that the unobserved factors are actually equal to their estimated

value.

Outline. The rest of this paper is organized as follows. Section 2 presents the

model and main results. Section 3 provides a decision-theoretic definition of a

task and shows that the mean of yi|xi solves any task. Section 4 discusses the

extensions of our main results.

2 Model and Main Results

There is a scalar outcome variable yi, a vector of k covariates xi, and a vector of

d latent features zi (d < k). Consider the linear factor model

yi = α′zi + ui, (1)

xi = β′zi + vi, (2)

where ui

vi

zi

 ∼ N


0

0

0

 ,

σ2
u 0 0

0 Σv 0

0 0 Id


 . (3)

It is further assumed that Σv is diagonal with strictly positive entries, and that

βΣ−1
v β′ has rank d. The above model parameterizes the joint distribution of (yi, xi)

by θ ≡ (α, β, σ2
u,Σv). Equations (1)-(2) can be viewed as a restricted version of

the diffusion index forecasting model of Stock and Watson (2002), analyzed in

detail by Bai and Ng (2006).
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2.1 Sufficient and Invariant Representations

The following definitions of representations are based on Achille and Soatto (2018),

but properly adjusted to account for the parametric nature of the linear Gaussian

factor model.

Definition 1 (Sufficient Representation). We say that z∗i is a representation

of xi at θ if z∗i is a function of xi—possibly stochastic—and

Pθ(z
∗
i |yi, xi) = Pθ(z

∗
i |xi). (4)

The representation is said to be sufficient at θ if the condition

yi⊥xi|z∗i (5)

holds under Pθ.

As explained in the introduction, Equation (4) formalizes the idea that a rep-

resentation must be a transformation of only covariates, and not the outcome

variable. Equation (4) allows for a large class of random variables to serve as

representations of xi. For instance, any function of the form a + b′xi + ci, where

ci is random vector independent of (ui, vi, zi), is a representation.

Not all representations are sufficient, as defined in Equation (5). One inter-

pretation of sufficiency is that, once a sufficient representation is constructed, it

is then possible to throw away all covariates and retain all relevant information

about the outcome variable.

Beyond sufficiency, we are interested in the invariance of representations as

defined below.

Definition 2 (Nuisance and Invariance). A random variable ni is a nuisance

at θ if

xi ̸⊥ni and yi⊥ni

under Pθ. A representation z∗i is said to be invariant to a nuisance ni if the mutual

information

Iθ(z
∗
i , ni) ≡ KL (Pθ(z

∗
i , ni)||Pθ(z

∗
i )⊗ Pθ(ni)) (6)

equals zero.
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The definition of nuisance is quite general, and in principle refers to any random

variable ni that affects xi, and is independent of yi. Throughout the rest of the

paper we consider vi (the error term in the factor model for covariates xi) as the

nuisance of interest.

A representation is said to be maximally insensitive to nuisance ni—in a class

of representations C—if it minimizes (6) among the representations in C. A rep-

resentation is said to be asymptotically invariant under a sequence of parameters

{θk}—indexed by the dimension of the covariates—if Iθ(z
∗
i , ni) → 0 as k → ∞.

2.2 Representations in the Linear Gaussian Factor Model

Consider the following (nonstochastic) linear representations of xi.

Eθ[yi|xi], Eθ[zi|xi], z
∗
i ≡ (βΣ−1

v β′)−1βΣ−1
v xi. (7)

The first representation is the conditional mean of yi given xi (assuming the pa-

rameter θ is known). The second one is the conditional mean of the factor zi given

xi, also assuming θ is known.1 Finally, z∗i is the WLSE of zi based on Equation

(2) and assuming β is known (see Anderson (2003), Section 14.7, Equation 1, p.

592).

Let Q denote an arbitrary orthogonal matrix of dimension d.

Proposition 1.

i) In the model given by (1)-(2), Eθ[yi|xi], Eθ[zi|xi], and Qz∗i are sufficient

representations of xi at θ.

ii) The mutual information between these representations and the nuisance vi

satisfies

Iθ(Eθ[zi|xi], vi) = Iθ(Qz∗i ; vi) ≥ Iθ(Eθ[yi|xi]; vi) > 0,

for any fixed k, where the first inequality is strict if and only if d > 1.

iii) These sufficient representations are asymptotically invariant to the nuisance

vi under any sequence of parameters for which det(Id + (βkΣ
−1
v,kβ

′
k)

−1) ≤
1In the Gaussian factor model, both conditional means are linear functions of the covariates.
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1 + o(k) as k → ∞.

The proof of Proposition 1 is given in Appendix A.1. All results follow from

calculations based on the multivariate normal model. Some comments on Propo-

sition 1.

First, although it is immediate to recognize Eθ[yi|xi], Eθ[zi|xi], and Qz∗i as

representations, it is less evident that such representations are sufficient.

Consider the case of the WLSE of the factors. If Qz∗i provided a noiseless

measure of the factors zi, sufficiency would be verified by definition (as, conditional

on the factors, yi and xi are independent). However, the representation Qz∗i

measures zi with error:

Qz∗i = Qzi +Q(βΣ−1
v β′)−1βΣ−1

v vi. (8)

The proof of Proposition 1 in Appendix A.1, verifies that conditioning on Qz∗i

makes yi and xi independent. The derivation crucially exploits the Gaussian na-

ture of the factor model, although we later discuss how the proof of sufficiency

can be extended to a more general class of models.

Second, Part ii) of Proposition 1 provides a comparison of the representations

in terms of mutual information—which is an information-theoretic measure of

dependence—with nuisance vi. Equation (8) already shows that Qz∗i and vi are

not independent, and the mutual information formula in Proposition 1 further

quantifies the dependence.2 Part ii) of Proposition 1 shows that the mutual infor-

mation between Qz∗i and vi will equal the mutual information between Eθ[zi|xi]

and vi. Both Qz∗i and Eθ[zi|xi] (which have dimension d) are typically viewed as

legitimate estimators of zi (one of them frequentist, and the other one Bayesian).

The representation Eθ[yi|xi] (weakly) dominates the other in terms of mutual

information. It is already a bit surprising that Eθ[yi|xi] is a sufficient representation

(because this conditional mean cannot be viewed as an estimator of the underlying

factors). It is even more remarkable that such representation is better in terms of

invariance to the nuisance vi.

Third, Part ii) of Proposition 1 also shows that none of the above representa-

tions are invariant to vi. However, Part iii) of Proposition 1 shows that the mutual

2In Appendix A.5, Lemma 2 provides a tractable and close form expression for mutual infor-
mation.
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information between the representations and vi converges to zero as the dimension

of the covariates goes to infinity. One possible intuition is that, as k → ∞, the

measurement error in (8) vanishes. The result then follows from the independence

of vi and zi. To formalize this result we needed to impose some restrictions on

how the parameters of the factor model change as k increases. One common as-

sumption in the literature—see Assumption B in Bai and Ng (2006)—is that the

factor loadings have a well-defined limit when scaled by the number of covariates;

namely,

k−1βkΣ
−1
v,kβ

′
k → Σβ,

where Σβ is a nonsingular d × d matrix. This assumption, which shall be used

later, implies that

det(Id + (βkΣ
−1
v,kβ

′
k)

−1) → 1,

which allows us to verify the assumptions of Part iii) of Proposition 1.

2.3 Maximally Insensitive Representations

The representation Eθ[yi|xi] is already appealing because of its sufficient, and it

has the lowest possible dimension. In addition, as k → ∞ this representation is

asymptotically invariant. The only limitation is that it is not invariant to nui-

sance vi for a fixed k. Is it possible to find a better representation? The following

proposition shows this is impossible, with some qualifications.

Proposition 2: In the model given by (1)-(2), the representation Eθ[yi|xi] is

maximally insensitive to nuisance vi among the class of all nonstochastic, linear,

and sufficient representations.

The proof of Proposition 2 in Appendix A.2 is constructive. The key argument

is that for any nonstochastic, linear, sufficient representation of dimension p ≥ 1,

we can find a representation of the same dimension and with the same mutual

information with respect to the nuisance, but explicitly contains Eθ[yi|xi] as one

of its entries. Intuitively, this implies that any nonstochastic, linear, and sufficient

representation—in a sense—captures other features of the covariates that are not

Eθ[yi|xi]. As a consequence of the chain rule of conditional mutual information,

we can show that the mutual information with respect to nuisance vi of Eθ[yi|xi]

has to be equal or smaller.
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An implication of our result is that all nonstochastic, linear, and sufficient

representation of dimension one are proportional to Eθ[yi|xi] and thus have the

same mutual information with respect to vi. This means that all nonstochastic,

linear, and sufficient representations of dimension one are maximally insensitive

to nuisance vi.

A representation that is maximally insensitive to nuisance vi in the class of

sufficient representations is useful for two reasons. First, sufficient representations

and covariates xi have the same mutual information with outcome variable yi.

Second, nuisance vi affects only the covariates but not the outcome variable, thus

a maximally insensitive representation minimizes the effect of the nuisance in the

representation.

3 Downstream Tasks

Intuitively, a good representation should be useful in downstream tasks, such as

prediction. Therefore, it is important to explore the extent to which the represen-

tations discussed in Section 2 are useful for solving decision problems that involve

(yi, xi), such as prediction. In this section, we provide a decision-theoretic defi-

nition of a task and show that, in the model (1)-(2), the conditional mean of yi

given xi solves any task efficiently, in a sense we make precise. More generally, in

Section 4 we provide an algorithm of how the WLSE of the factors can be used to

asymptotically solve any task when k → ∞.

Preliminaries: Let Pθ denote a joint distribution over (yi, xi) ∈ Y × X .

Let A denote some action space. We define a loss function in the usual way:

L : Y × A → R.3 We refer to any (measurable) function a : X → A as an

algorithm. The expected loss of an algorithm a(·) at θ is referred to as the risk of

a(·) at θ. That is, we define the risk function R(·, ·) as

R(a(·), θ) ≡ Eθ[L(y, a(x))]. (9)

A downstream task (or simply a task) is a tuple:

T ≡ (L,A,Pθ). (10)

3Examples of loss functions are quadratic loss, L(y, a) = (y − a)2, or the check function,
L(y, a) = y(τ − 1{y < 0}).
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An algorithm a(·) is optimal for task T at θ if

R(a(·), θ) ≤ R(a′(·), θ), (11)

for any other algorithm a′(·).

Definition 3: A representation z∗ solves task T at θ if there is an optimal algo-

rithm a∗—for task T at θ—that depends on x only through the representation.

That is, a representation z∗ solves a task T if we can find an algorithm a(·)
that only uses z∗ as input and has smaller or equal risk than any other algorithm.

We further say that a representation z∗ solves task T efficiently at θ if there is no

other representation of a lower dimension that solves task T at θ.

The law of iterated expectations implies that an optimal algorithm at θ must

choose, for each x, the action that minimizes

Eθ[L(y, a)|x].

Such an expectation depends only on the conditional distribution of yi|xi at θ.

Proposition 3: In the linear Gaussian factor model given by (1)-(2) the repre-

sentation Eθ[yi|xi] solves any task T efficiently at θ.

It is well-known that Eθ[yi|xi] is the optimal predictor under quadratic loss.

However, the result in Proposition 3 shows that, for any loss, it is possible to

dispense with the covariates, retain the representation Eθ[yi|xi] and still achieve

the smallest possible risk at θ.

The idea behind the proof is quite simple; the details are presented in Appendix

A.3. In the linear Gaussian factor model the conditional distribution of yi|xi is

characterized by its first two moments, and the second moment depends only on θ

and not on x. Because the representation is the first moment, the one-dimensional

representation Eθ[yi|xi] has all information about the conditional distribution of

yi|xi.
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4 Extensions

The main results of this paper have been derived under strong assumptions: a

linear Gaussian factor model for covariates and response variable. In this section,

we discuss a generalization of our main results by allowing a different model for

the outcome variable. In addition, we propose an algorithm to asymptotically

solve a downstream task using an asymptotically invariant representation.

4.1 A More General Model for the Outcome Variable

Just as before, suppose there is a scalar outcome variable yi with support Y , a

vector of k covariates xi, and a vector of d latent features zi (d < k). Consider

the model

yi | xi, zi, α, σu ∼ f(yi | zi, α, σu), (12)

xi = β′zi + vi, (13)

where f(yi|zi, α, σu) denotes a density of the form,

h(y, σu) exp([Ωα(zi)yi −Ψ(Ωα(zi))]/a(σu)). (14)

In our notation h(·, ϕ) is a real-valued function parametrized by σu defined on Y ,

a(·) is a positive function of σu, and Ψ(·) is a smooth function (usually referred

to as the log-partition function) defined on the real line. The density in (14) is

a slight modification of Generalized Linear Models described in McCullagh and

Nelder (1989, Equation 2.4) where Ωα(zi) now plays a role analogous to the natu-

ral parameter of the exponential family.4 Throughout this section, we assume the

following:

Assumption 1 : Ωα : Rd → R is a Lα-Lipschitz function; i.e.,

|Ωα(z1)− Ωα(z2)| ≤ Lα|z1 − z2|.
4Normal, Logistic, and Poisson models can be captured with conditional densities of the form

(14). See Table 2.1 p. 29 of McCullagh and Nelder (1989)
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We maintain the assumptions(
vi

zi

)
∼ N

((
0

0

)
,

(
Σv 0

0 Id

))
, (15)

yi ⊥ xi | zi, (16)

where Σv is a diagonal matrix with strictly positive entries, and βΣ−1
v β′ has rank

d. Once again, the above model parameterizes the joint distribution of (yi, xi) by

θ ≡ (α, β, σ2
u,Σv). Throughout this section, we shall also assume θ is known.

We now discuss the relation of (12)-(13) with existing related models in the

literature.

1. Nonlinear Regression model with Neural Networks: Schmidt-Hieber (2020)

recently analyzed a model of the form

yi = Ωα(zi) + ϵi, ϵi⊥zi, ϵi ∼ N (0, σ2
u),

where zi is observed and Ωα(zi) is a deep neural network. Schmidt-Hieber

(2020) assumed (yi, zi) are observed. In contrast, we assume that zi is a

latent factor, ϵi⊥(xi, zi), and there is a linear factor model for xi.

2. Exponential Family Principal Component Analysis: If we assume that Ωα(zi) =

α′zi, our model becomes the exponential family principal component anal-

ysis model in Collins et al. (2002). Our model assumes that if the latent

factors are known, the covariates xi will not effect the distribution of yi. If

we maintain the linear factor model in (13), the only use of the covariates is

their ability to estimate zi.

3. Deep Latent Gaussian Model: The model (12)-(13) can be described as a

particular case of the general model described in the highly cited work of

Rezende et al. (2014). Compared with their model, we assume there is only

one hidden layer of latent variables.

4. Deep Latent Variable Model: The outcome model (12) is also a special case of

the model in Mattei and Frellsen (2018) for two reasons. First, our outcome

variable is scalar. Second, our model uses an exponential family density.
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4.2 Computing Expected Loss using Representations

Characterizing sufficient and maximally insensitive representations in this model is

more challenging. However, there is a sense in which the WLSE of the factors, z∗i ,

is still a useful representation. As mentioned in Proposition 1, this representation

is asymptotically invariant to the nuisance in the factor model for the covariates.

We would like to argue that the representation can be used to simplify the com-

putation of the expected loss of a particular action. To see this, note that for any

loss function L(y, a) the optimal algorithm prescribes the action that minimizes

Eθ[L(y, a)|x]. The conditional density of Y given X is a mixture distribution:

fθ(y|x) =

∫
f(y|z, x, α, σu)dFθ(z|x),

=

∫
f(y|z, α, σu)dFθ(z|x),

where the last equality follows from (12). We can show that, as k → ∞, the

distribution of z|x, Fθ(z|x), concentrates around the WLSE of the factor, z∗,

which is a linear function of x.5 Thus,

fθ(y|x) ≈ f(y|z = z∗, α, σu).

In this case, the best action at θ can be found by computing expected loss according

to a model in which yi has a distribution as in (14) but evaluated at z∗i . This

suggests that we can use a representation z∗i to compare different actions when

solving downstream tasks, provided the dimension of xi is large. This can be

performed by defining an auxiliary outcome variable y∗i :

y∗i | z∗i , α, σu ∼ f(y∗i | z∗i , α, σu), (17)

where this auxiliary outcome variable formalizes the discussion described above

and does not depend on latent factors, zi.

We claim that, under some regularity assumptions, we can evaluate the per-

formance of different actions in the downstream task using (17) as k → ∞.

We first restrict the set of downstream tasks that we are interested in, by re-

5In fact, the simple decomposition for fθ(y|x) suggests that Eθ[zi|xi] is still a sufficient
representation, despite having a more complicated model for the outcome variable. The reason
is that Fθ(z|x) only depends on covariates through Eθ[zi|xi].
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stricting the loss functions that we are working with.

Assumption 2 : The loss function L(·, a) : Y → [0,+∞) is dominated by a

quadratic polynomial; i.e.,

L(y, a) ≤ c1 + c2 y
2,

where c1, c2 > 0 are constants that could be functions of a.

This assumption allows for quadratic, check, and 0-1 losses.6 Thus, we are

interested in tasks such as prediction, quantile estimation, and classification.

We further require some control on the moments of y|x. Because of (14), all

moments of y|z will exist. However, the distribution of y|x is a mixture distribu-

tion of y|z and z. Consequently, we need to be able to integrate over the moments

of y|z. We achieve this by requiring that the tails of y|z have polynomial decline

and is a function of the parameter Ωα(z):

Assumption 3: The exponential family satisfies the following regularity condi-

tion,

Pθ[|y| ≥ t | z, α, σu] ≤ t−4(c3 + c4 exp(c5|Ωα(z)|)),

for any z and t > 0, where c3, c4, and c5 are nonnegative constants.7

Proposition 4: Suppose Assumptions 1-3 hold. Consider evaluating the expected

loss of an action a given some value of the covariates x. Suppose that as k → ∞
the parameters of the model and covariates satisfy

βΣ−1
v β′/k → Σβ︸︷︷︸

d×d

and βΣ−1
v x/k → µβ︸︷︷︸

d×1

,

6The quadratic function, (y − a)2 ≤ 2y2 + 2a2, and the check function, y(a − 1y<0) ≤
0.5max{a, 1− a}y2 + 0.5max{a, 1− a}, satisfy Assumption 2.

7This assumption is satisfied for Normal, Logistic and Poisson models, for example.
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where Σβ is nonsingular. Then, the difference∫
L(y, a)f(y | xk, α, σu)dy︸ ︷︷ ︸

Eθ[L(y,a)|x]

−
∫

L(y∗, a)f(y∗ | z∗i (xk), α, σu)dy
∗︸ ︷︷ ︸

expected loss for the auxiliary model

,

(18)

goes to zero, as k → ∞.

The key insight of this proposition is that the expected loss can be computed

using the exponential family distribution but assuming that the unobserved factors

are equal to their estimated values, which are given by the representation. The

main idea is that Assumption 2 is sufficient to prove (18) for a quadratic loss

function. To conclude the proof, we use the proposition assumptions to verify that

the probability density function converges pointwise and Assumption 1 and 3 to

guarantee that we can apply a variation of the Dominated Convergence Theorem.

Details are presented in Appendix A.4.

Proposition 4 was derived for a fixed action a and known parameters θ. How-

ever, it suggests a strategy for solving downstream tasks when the dimension of

xi is large.

Consider the following approach:

1. Estimate β from the linear factor model for xi.

2. Compute the feasible version of z∗i , given by ẑ∗i ≡ (β̂Σ̂vβ̂
′)−1β̂Σ̂vxi.

3. Treat ẑ∗i as zi and estimate the parameters α and σu in the exponential

family model.

4. Pick the action that minimizes the expected loss according to

y∗i | ẑ∗i , α̂, σ̂u ∼ f(y∗i | ẑ∗i , α̂, σ̂u), (19)

In the case of prediction, predict using Ψ′(Ωα̂(ẑ
∗
i ))

These four steps seem to generalize the forecasting algorithm of Stock and

Watson (2002) and the ‘unsupervised pretraining’ strategy described in Chapter

15 of Goodfellow et al. (2016). We believe that it is possible to use standard results

15



in the asymptotic analysis of factor models to formalize the validity of this strat-

egy, provided we make high-level assumptions about our ability to consistently

estimate the parameters α and σu of the function Ωα(·)) (which could be a neu-

ral network). The derivation of these results would need to consider asymptotics

where both N (the number of training examples) and k (the dimension of the co-

variate vector) diverge to infinity. We plan to pursue this extension in future work.

5 Conclusion

In this paper, we analyzed recent theoretical developments in the representation

learning literature in the context of a linear Gaussian factor model. In particular,

we applied the definitions of representations in Achille and Soatto (2018) and

properties studied therein to search for good representation in the linear Gaussian

factor model.

We showed that Eθ[yi|xi], Eθ[zi|xi], and any orthogonal rotation of the usual

WLSE of zi are sufficient representations of xi at θ. These representations are not

invariant, but we showed they are asymptotically invariant as the dimension of

the covariate vector goes to infinity.

We also showed that Eθ[yi|xi] is maximally insensitive to nuisance vi; among

the class of all nonstochastic, linear, and sufficient representations. In addition,

we showed that this representation can be used to solve any task efficiently, not

only prediction. Our definition of a task was decision-theoretic based: we defined

a task using a loss function and an action space.

Finally, we considered an extension of the linear Gaussian factor model allow-

ing for a more complicated distribution of the outcome variable conditional on the

factors. Our framework allowed us to suggest a simple approach to use the WLSE

of the latent factors, zi, to compare different actions that are relevant for a down-

stream task. Our approach can be viewed as a generalization of the forecasting

algorithm of Stock and Watson (2002) and the ‘unsupervised pretraining’ strategy

described in Chapter 15 of Goodfellow et al. (2016).
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A Proofs of Main Results

A.1 Proof of Proposition 1

The proof of this proposition has three parts as was discussed in the main text.

First, we will prove that Eθ[yi |xi], Eθ[zi |xi] and Qz∗i are sufficient representations.

Second, we will compute the mutual information with respect to the nuisance vi.

And third, we will prove that these representation are asymptotically invariant.

Part i): Algebra on multivariate normal distribution shows

Eθ[yi|xi] = α′βΣ−1
x xi and Eθ[zi|xi] = βΣ−1

x xi,

where Σx ≡ Σv+β′β. Define byA1 ≡ α′βΣ−1
x , A2 ≡ βΣ−1

x andA3 ≡ (βΣ−1
v β′)−1βΣ−1

v .

This means that we can write the three representations as deterministic linear rep-

resentations of x:

Eθ[yi | xi] = A1x, Eθ[zi | xi] = A2x and z∗i = A3x

By Lemma 1 in Appendix A.5, we conclude that these three representation are

sufficient representations since we can verify that inverse matrix of AjΣxA
′
j exists

and

ΣxA
′
j(AjΣxA

′
j)

−1Ajβ
′α = β′α,

for j = 1, 2, 3.

Part ii): By Lemma 2 in Appendix A.5, we knows that for any ẑi ≡ Axi such

that the inverse of matrix (AΣxA
′)−1 and Aβ′βA′ are well-defined, then the mutual

information between ẑi and vi is

Iθ(ẑi; v) =
1

2
ln
( det(AΣxA

′)

det(Aβ′βA′)

)
.

By part i), we know that the representations in this proposition are determin-

istic and linear. Also we can verify that Ajβ
′βA′

j has inverse for j = 1, 2, 3. Then,
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algebra shows

Iθ(Eθ[yi | xi]; vi) =
1

2
ln

(
α′(Id − (Id +Ψ)−1)α

α′(Id − (Id +Ψ)−1)2α

)
,

Iθ(Eθ[zi | xi]; vi) =
1

2
ln

(
1

det(Id − (Id +Ψ)−1)

)
,

Iθ(z
∗
i ; vi) =

1

2
ln

(
det(Id +Ψ)

det(Ψ)

)
,

where Ψ = βΣ−1
v β′.

To conclude the comparison of the representations in terms of mutual infor-

mation with the nuisance vi, observes that I(Eθ[zi |xi]; vi) = Iθ(ẑi; vi) is equivalent

to prove
det(Id +Ψ)

det(Ψ)
=

1

det(Id − (Id +Ψ)−1)
,

which is true by algebra manipulation.

To prove I(z∗i ; vi) ≥ Iθ(Eθ[yi | xi]; vi), denote by λ1 ≤ ... ≤ λd the eigenvalues

of Id − (Id + Ψ)−1 and by w1, ..., wd the associated eigenvectors. An important

observation is that all these eigenvalues are lower than one and we can use them

compute I(z∗i ; vi) and I(Eθ[yi | xi]; vi). In particular, we have

1

det(Id − (Id +Ψ)−1)
=

1

λ1...λd

,

and if we write α =
∑d

m=1 amwm using the eigenvectors wi, we have

α′(Id − (Id +Ψ)−1)α

α′(Id − (Id +Ψ)−1)2α
=

∑d
m=1 a

2
mλm∑d

m=1 a
2
mλ

2
m

This implies that I(z∗2 ; v) ≥ Iθ(z
∗
3 ; v) since λ’s are lower than one, where equality

only holds if d = 1.

Part iii): By part ii), it will be sufficient to prove that

lim
k→∞

Iθ(z
∗
i ; vi) = 0,

to guarantee that the three representations are asymptotically invariant. By part
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2, we have

Iθ(z
∗
i ; vi) =

1

2
ln

(
det(Id +Ψ)

det(Ψ)

)
=

1

2
ln
(
det(Id +Ψ−1)

)
,

and by assumption det(Id +Ψ−1) → 1 as k → ∞. This concludes our proof.

A.2 Proof of Proposition 2

Case 1: p > 1. Suppose ẑi = Axi is a deterministic linear sufficient representation

of dimension p, where A ∈ Rp×k and p < k. We want to prove

Iθ(ẑi; vi) ≥ Iθ(Eθ[yi|xi]; vi)

where Eθ[yi|xi] = α′βΣ−1
x x is the conditional mean of yi given xi and Σx ≡

Σv + β′β. By Proposition 1, we know that Eθ[yi|xi] is also a deterministic lin-

ear sufficient representation. Define A3 ≡ α′βΣ−1
x .

By Lemma 1 in Appendix A.5, we know that

ΣxA
′(AΣxA

′)−1Aβ′α = β′α

and

ΣxA
′
3(A3ΣxA

′
3)

−1A3β
′α = β′α.

These two equations imply

A′ (AΣxA
′)−1Aβ′α︸ ︷︷ ︸
p×1

= A′
3 (A3ΣxA

′
3)

−1A3β
′α︸ ︷︷ ︸

1×1

,

and this is equivalent to

Q0︸︷︷︸
1×p

A︸︷︷︸
p×k

= A3︸︷︷︸
1×k

, (20)

where

Q0 ≡
(AΣxA

′)−1Aβ′α

(A3ΣxA′
3)

−1A3β′α
.

Thus, we can construct a (p− 1)× 1 matrix B such that

Q ≡

(
Q0

B

)
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is an invertible matrix. Define the new representation of dimension p

z̃i ≡ Q︸︷︷︸
p×p

Axi︸︷︷︸
p×1

.

The new representation is a linear transformation of ẑi. Equation (20) implies

z̃i =

Q0Axi

BAxi︸ ︷︷ ︸
(p−1)×1

 =

(
Eθ[yi|xi]

BAxi

)
.

Thus, the first entry of the new representation is the conditional mean of yi given

xi. By Lemma 2 in Appendix A.5, we have

Iθ(z̃i; vi) =
1

2
ln
( det(QAΣxA

′Q′)

det(QAβ′βA′Q′)

)
.

Thus, algebra shows that

Iθ(z̃i; vi) =
1

2
ln
( det(Q) det(AΣxA

′) det(Q′)

det(Q) det(Aβ′βA′) det(Q′)

)
,

(as det(MN) = det(M) det(N))

=
1

2
ln
( det(AΣxA

′)

det(Aβ′βA′)

)
,

= Iθ(ẑi; vi).

Thus, we have shown that the mutual information between z̃ and the nuisance v

is the same as the mutual information between ẑi and vi. Note that ẑi was an

arbitrary sufficient representation, and we obtained z̃i from ẑi by transforming the

latter to have the conditional mean of y given x in the first coordinate.

Now, we will prove that I(z̃i; vi) ≥ Iθ(Eθ[yi|xi]; vi). Since z̃
′
i = [Eθ[yi|xi], x

′
iA

′B′]′,

by chain rule on conditional mutual information we have

Iθ(z̃; vi) = Iθ(Eθ[yi|xi], BAx; vi) = Iθ(Eθ[yi|xi]; vi) + I(BAx; v | Eθ[yi|xi])︸ ︷︷ ︸
≥0

≥ Iθ(Eθ[yi|xi]; vi).

Then, we conclude the conditional mean of yi given xi is maximally insensitive to

vi (among all linear deterministic representations); i.e.,

Iθ(ẑi; vi) = Iθ(z̃i; vi) ≥ Iθ(Eθ[yi|xi]; vi).
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Case 2: p = 1. By Lemma 1 in Appendix A.5, we have

ΣxA
′ (AΣxA

′)−1Aβ′α︸ ︷︷ ︸
1×1

= β′α

This implies

ẑi = Axi = γα′βΣ−1
x xi = γEθ[yi|xi]

where γ = (AΣxA
′)−1Aβ′α ∈ R − {0}. It follows that I(ẑi, vi) = Iθ(Eθ[yi|xi], vi).

Thus, deterministic linear sufficient representation of dimension one are also max-

imally invariance.

A.3 Proof of Proposition 3

The proof of this proposition has three main observations. First, posterior distri-

bution yi|xi is a Gaussian distribution characterized by its two moments (mean

and variance), under our model (1)-(2). Second, assuming the parameter θ is

known implies that we known the variances of yi|xi,

V(yi | xi) = V(yi)− Eθ[Eθ[yi|xi]
2].

Finally, the posterior distribution yi|xi is parametrized by the posterior mean,

which is Eθ[yi|xi]. These three observations implies that we can solve task T using

only the representation Eθ[yi|xi], which also has dimension one. This conclude the

proof of this proposition.

A.4 Proof of Proposition 4

The conditional distribution of the outcome variable to the covariates, yi | xi,k ∼
f(yi | xi,k), is expressed as

f(y | x) ≡
∫

f(y | x, z)ϕ(z | µk(x),Σk(x)) dz,

where µk(x) ≡ βΣ−1
x x and Σk(x) ≡ Id − βΣ−1

x β′ are the posterior mean and

variances. Since yi ⊥ xi | zi, we can write f(y | z, α, σu) instead of f(y | x, z). This
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give us

f(y | x) =
∫

f(y | z, α, σu)ϕ(z | µk(x),Σk(x)) dz.

We break the proof of in two main parts. The first part proves that∫
L(y, a)

∫
f(y | z, α, σu)ϕ(z | µk(x),Σk(x)) dzdy (21)

converges to ∫
L(y, a)f(y | z0, α, σu)dy, (22)

as k → ∞, and where z0 ≡ Σ−1
β µβ. In the second part, we prove that∫

L(y, a)f(y | z∗i (xi,k), α, σu)dy (23)

is also converging to equation (22). These two main parts implies (18).

Proof of Part 1 : In equation (21) all the terms in the integrals are positive.

By Tonelli’s Theorem we can change the order of the integrals. This implies that

equation (21) is equal to∫ ∫
L(y, a)f(y | z, α, σu)ϕ(z | µk(x),Σk(x)) dzdy. (24)

Step 1: Replace z = µk(x) + Σ
1/2
k (x)w in equation (24) to obtain∫ ∫

L(y, a)f(y | µk(w), α, σu)ϕ(w | 0, Id) dwdy, (25)

where µk(w) ≡ µk(x) + Σ
1/2
k (x)w. Equation (22) can be written as∫ ∫
L(y, a)f(y | z0, α, σu)ϕ(w | 0, Id) dwdy. (26)

Algebra shows that µk(x) = z∗i (xi,k) + O(k−1) and Σk(x) = (βΣ−1
v β′/k)O(k−1).

By assumptions of the proposition, we have z∗i → Σ−1
β µβ = z0 as k → ∞. This

implies that for a given w and y, we have

µk(w) = µk(x) + Σ
1/2
k (x)w → z0 as k → ∞.
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Thus, we can expected that equation (25) converge to (26) since

f(yi | zi, α, σu) = h(y, σu) exp([Ωα(zi)yi −Ψ(Ωα(zi))]/a(σu))

is continuous on zi. This follows by the continuity of Ωα(zi) and Ψ(·), which holds

under Assumption 1 and definition of f(·|z, α, σu).

Step 2: By Assumption 2, equation (25) is bounded by∫ ∫
(c1 + c2y

2)f(y | µk(w), α, σu)ϕ(w | 0, Id) dwdy, (27)

and, in a similar way, equation (26) is bounded by∫ ∫
(c1 + c2y

2)f(y | z0, α, σu)ϕ(w | 0, Id) dwdy. (28)

By Exercise 12, p. 133 in Dudley (2002), it will be sufficient to prove that (27)

and (28) are well-defined, and that equation (27) converges to (28). To do this,

we can ignore the constants. Thus, we want to prove that

Eθ[y
2
k] → Eθ[y

2
0] as k → ∞, (29)

where

yk ∼ f(y | µk(w), α, σu)ϕ(w | 0, Id)

and

y0 ∼ f(y | z0, α, σu)ϕ(w | 0, Id)

Since the p.d.f. of yk converges to y0 point-wise, it follows that yk converges weakly

to y0. By the Continuous Mapping Theorem, it follows that y2k converges weakly

to y20. By Theorem 3.5, p.31 in Billingsley (1999), we only need to prove that

{y2k}k is uniformly integrable to conclude (29).

Step 3: We will prove that supEθ[|yk|3] < +∞, which implies that {y2k}k is

uniformly integrable. For details see equation (3.18), p.31, in Billingsley (1999).
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Algebra shows

Eθ[|yk|3] = Eθ[|yk|31{|yk|>1}] + Eθ[|yk|31{|yk|≤1}]

=

∫ ∞

1

Pθ[|yk|3 > t]dt+ Pθ[|yk| > 1] + Eθ[|yk|31{|yk|≤1}]

≤
∫ ∞

1

Pθ[|yk| > t1/3]dt+ 2

=

∫ ∞

1

∫
Pθ[|yk| > t1/3 | µk(w), α, σu]ϕ(w | 0, Id)dwdt+ 2.

Since all the terms are positive, we can apply Tonelli’s Theorem and change the

order of the integrals. This implies

Eθ[|yk|3] ≤
∫ ∫ ∞

1

Pθ[|yk| > t1/3 | µk(w), α, σu]dtϕ(w | 0, Id)dw + 2,

and by Assumption 3, this is lower than∫ ∫ ∞

1

t−4/3
(
c3 + c4 exp(c5|Ωα(µk(w))|)

)
dt ϕ(w | 0, Id)dw + 2.

Algebra shows that expression above is equal to∫
3
(
c3 + c4 exp(c5|Ωα(µk(w))|)

)
ϕ(w | 0, Id)dw + 2,

where exp(c5|Ωα(µk(w))|) can be written as

exp(c5|Ωα(µk(w))− Ωα(z0) + Ωα(z0)|),

which is lower than

exp(c5|Ωα(µk(w))− Ωα(z0)|+ |Ωα(z0)|).

By Assumption 1, the previous expression is lower than

exp(c5Kα|µk(w)− z0|+ c5|Ωα(z0)|),

where µk(w)− z0 = µk(x)− z0 + Σ
1/2
k (x)w. This implies that

exp(c5|Ωα(µk(w))|) ≤ Ck exp(c5Kα|Σ1/2
k (x)w|),

where Ck ≡ exp(c5Kα|µk(x)− z0|+ c5|Ωα(z0)|).
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All this algebra implies,

Eθ[|yk|3] ≤
∫

3(c3 + c4Ck exp(c5Kα|Σ1/2
k (x)w|))ϕ(w | 0, Id) dw + 2, (30)

which can be bounded using the Moment Generation Function of the Normal

distribution. To see this, define by Γk ≡ ||Σ1/2
k (x)|| the matrix norm. This implies

|Σ1/2
k (x)w| ≤ Γk|w| ≤ ΓkΣ

d
j=1|wj|,

where the second inequality comes from triangle inequality or algebra. Using this,

we have that (30) is lower than∫
3(c3 + c4Ck exp(c5KαΓkΣ

d
j=1|wj|))ϕ(w | 0, Id) dw + 2.

By definition, Ck converges to exp(c5|Ωα(z0)|), thus is uniformly bounded. Then,

it will be sufficient to prove that∫
exp(c5KαΓkΣ

d
j=1|wj|)ϕ(w | 0, Id) dw

is uniformly bounded. To see that, observe that this expression can be written as

d∏
j=1

∫
exp(c5KαΓk|w|)ϕ(w | 0, 1) dw,

which is lower that

d∏
j=1

∫
(exp(−c5KαΓkw) + exp(c5KαΓkw))ϕ(w | 0, 1) dw.

Define by Mϕ(t) ≡
∫
exp(tw)ϕ(w | 0, 1) dw the Moment Generation Function.

Then, we have

Eθ[|yk|3] ≤ 3c3 + 3c4Ck

{
Mϕ(−c5KαΓk) +Mϕ(c5KαΓk)

}d
+ 2. (31)

By continuity, we know that Γk → 0 as k → ∞. This implies that equation (31)

is uniformly bounded. This complete the proof of uniformly integrability.
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Proof of Part 2 : In a similar way as we did for part 1 in step 2, it will be

sufficient to prove that∫
y2f(y | z∗i (xi,k), α, σu)dy →

∫
y2f(y | z0, α, σu)dy.

To conclude this, as we did for part 1 in step 3, it will be sufficient to prove that∫
|y|3f(y | z∗i (xi,k), α, σu)dy (32)

is uniformly bounded. By Assumption 3, and following step 3 above, this expres-

sion is lower than

3c3 + 3c4 exp(c5|Ωα(z
∗
i (xi,k))|) + 2,

which converges to

3c3 + 3c4 exp(c5|Ωα(z0)|) + 2.

This proves that (32) is uniformly bounded. This complete the proof.

A.5 Technical Lemmas

In this section, we present two technical lemmas to study the deterministic linear

representations and its relations with sufficiency concept and to compute mutual

information with the nuisance vi. The derivation of these results use basic algebraic

manipulation based on the multivariate normal model.

Lemma 1: Let ẑi be a deterministic linear representation of xi,

ẑi ≡ A︸︷︷︸
p×k

xi︸︷︷︸
k×1

.

Suppose the inverse of Eθ[ẑiẑ
′
i] exists. Then, ẑi is a sufficient representation of xi

at θ if and only if A solves the Sufficient Representation Equation (SRE):

ΣxA
′(AΣxA

′)−1Aβ′α = β′α, (33)

where Σx ≡ Σv︸︷︷︸
k×k

+β′β.

Proof. There are two parts:

Part I: Suppose A solves SRE. We will prove that ẑi = Axi is a sufficient repre-
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sentation of xi, i.e. yi⊥xi | ẑi. First observe thatxi

yi

ẑi

 ∼ N


0

0

0

 ,

 Σx β′α ΣxA
′

α′β Σy α′βA′

AΣx Aβ′α AΣxA
′


 .

where Σx = Σv + β′β, Σy = σ2
u + α′α and Eθ[ẑiẑ

′
i] = AΣxA

′. Since the vector

[xi y
′
i ẑ

′
i]
′ is Gaussian, it follows that(

xi

yi

)
| ẑi ∼ N

(
µ,Σ

)
.

where µ = Σ12Σ
−1
2 ẑi and Σ = Σ1 − Σ12Σ

−1
2 Σ21. Here, Σ2 = AΣxA

′ has an inverse

matrix by assumption and

Σ1 =

(
Σx β′α

α′β Σy

)
, and Σ12 =

(
ΣxA

′

α′βA′

)
= Σ′

21

Define

Σ12Σ
−1
2 Σ21 =

(
Σ1 Σ12

Σ21 Σ2

)

Algebra shows

Σ1 = ΣvA
′Σ−1

2 AΣx + β′βA′Σ−1
2 AΣx

Σ12 = ΣxA
′Σ−1

2 Aβ′α

Σ21 = α′βA′Σ−1
2 AΣx

Σ2 = α′βA′Σ−1
2 Aβ′α

Since A solve SRE and Σ2 = AΣxA
′, it follows that Σ12 = β′α. This implies

that correlation between xi | ẑi and yi | ẑi is zero, which proves that yi⊥xi | ẑi since
(yix

′
i)
′ | ẑi is Gaussian.

Part II: Suppose that ẑi = Axi is a sufficient representation of xi. This implies

yi⊥xi | ẑi, in particular correlation between xi | ẑi and yi | ẑi is zero. This implies
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that Σ12 = β′α. Since Σ2 = AΣxA
′ we have

ΣxA
′(AΣxA

′)−1Aβ′α = β′α

which is the Sufficient Representation Equation, then A solves SRE.

Lemma 2 : Suppose ẑi = Axi is a deterministic linear representation of dimension

p and vi is the noise in the factor model for the covariates xi. Assume in addition

that the inverse of Eθ[ẑiẑ
′
i] and Aβ′βA′ exists, in particular that p < k. Then, the

mutual information between ẑi and vi is

Iθ(ẑi; v) =
1

2
ln
( det(AΣxA

′)

det(Aβ′βA′)

)
> 0,

where Σx ≡ Σv + β′β.

Proof. Since xi = β′zi + vi, where zi⊥vi, and ẑi = Ax, then(
ẑi

v

)
∼ N

((
0

0

)
,

(
AΣxA

′ AΣv

ΣvA
′ Σv

))
.

To compute the mutual information between ẑi = Axi and vi, we need to calcu-

late the Kullback-Leibler divergence between the multivariate normal distribution

defined above and the following multivariate normal distribution (assuming no

correlation between ẑi and vi):

N

((
0

0

)
,

(
AΣxA

′ 0

0 Σv

))
.

By assumption, the inverse of both Eθ[ẑẑ
′] = AΣxA

′ and Σv exists. By Propo-

sition 1 in Contreras-Reyes and Arellano-Valle (2012), the Kullback-Leibler diver-

gence between these two multivariate normal distributions is

1

2

{
ln

(
det(Ω2)

det(Ω1)

)}
.

where

Ω1 =

(
AΣxA

′ AΣv

ΣvA
′ Σv

)
and Ω2 =

(
AΣxA

′ 0

0 Σv

)
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Since the inverse of both AΣxA
′ and Σv exists by assumption, Theorem 2 in

Silvester (2000) implies that

det(Ω1) =det(Σv) det(AΣxA
′ − AΣvA

′)

=det(Σv) det(Aβ
′βA′)

(since Σx = Σv + β′β)

det(Ω2) =det(Σv) det(AΣxA
′)

It follows that

Iθ(ẑi; v) =
1

2

{
ln

(
det(Ω2)

det(Ω1)

)}
=
1

2

{
ln

(
det(Σv) det(AΣxA

′)

det(Σv) det(Aβ′βA′)

)}
=
1

2

{
ln

(
det(AΣxA

′)

det(Aβ′βA′)

)}
which is the close form expression of this lemma.

To conclude that mutual information between ẑi and vi is positive, let us use

the following the general fact. Mutual information of two random variables is zero

if and only if these random variables are independent. Since ẑi = g(β′zi + vi) and

vi both have in common vi, it follows that they are not independent. This implies

I(ẑi, vi) > 0.
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