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E Proofs of Auxiliary Results

Notation: Recall η̂i = η̂k(Xi) for i ∈ Ik and nk = n/K is the number of obser-

vations on the fold Ik. Denote ψz
i = ψz(Wi, ηi) and ψ̂z

i = ψz(Wi, η̂i) for z = a, b;

mi = m(Wi, θ0, ηi), and m̂i = m(Wi, θ0, η̂i); ∂ηmi = ∂ηm(Wi, θ0, ηi) and ∂ηm̂i =

∂ηm(Wi, θ0, η̂i); ∂
2
ηmi = ∂2ηm(Wi, θ0, ηi) and ∂2ηm̂i = ∂2ηm(Wi, θ0, η̂i) . Here, || · || is

the euclidean norm (ℓ2 norm), J0 = E[ψa
i ], CLT is for Central Limit Theorem, LLN

is for Law of Large Numbers, LIE is for Law of Iterated Expectations, C-S is for

Cauchy-Schwartz inequality, RHS is for right-hand side.

E.1 Proof of Theorem C.1

Proof. Using the notation of this section, the definitions of the DML1 estimator in

(2.6) and the moment function m in (2.2), it follows

n1/2
(
θ̂n,1 − θ0

)
= K−1/2

K∑
k=1

n
−1/2
k

∑
i∈IK m̂i

n−1
k

∑
i∈IK ψ̂

a
i

,
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and similarly for the oracle version defined in (2.8),

n1/2
(
θ̂∗n,1 − θ0

)
= K−1/2

K∑
k=1

n
−1/2
k

∑
i∈IK mi

n−1
k

∑
i∈IK ψ

a
i

.

Using the previous two expressions,

n1/2
(
θ̂n,1 − θ̂∗n,1

)
= I1 + I2

where

I1 = K−1/2

K∑
k=1

n
−1/2
k

∑
i∈IK (m̂i −mi)

n−1
k

∑
i∈IK ψ̂

a
i

I2 = K−1/2

K∑
k=1

(
n
−1/2
k

∑
i∈IK mi

)(
n−1
k

∑
i∈Ik ψ

a
i − ψ̂a

i

)
(
n−1
k

∑
i∈IK ψ̂

a
i

) (
n−1
k

∑
i∈Ik ψ

a
i

)
In what follows, I will show that both I1 and I2 are op(1), which is sufficient to

complete the proof of the theorem.

Claim 1: I1 = op(1). I first rewrite I1 using the identity a(1 + b)−1 = a− ab(1 + b)−1

with a = Î1,k and b = I1,k, where

Î1,k = n
−1/2
k

∑
i∈IK

(m̂i −mi)/J0 ,

I1,k = n−1
k

∑
i∈IK

(ψ̂a
i − J0)/J0 .

This implies

I1 = K−1/2

K∑
k=1

Î1,k − Î1,kI1,k (1 + I1,k)
−1 (E.1)

To show the claim, consider the following derivations

|I1|
(1)

≤

∣∣∣∣∣K−1/2

K∑
k=1

Î1,k

∣∣∣∣∣+
(
K−1/2

K∑
k=1

|Î1,k||I1,k|

)
× max

k=1,...,K

∣∣∣∣∣n−1
k

∑
i∈IK

ψ̂a
i /J0

∣∣∣∣∣
−1

(2)
=

∣∣∣∣∣n−1/2
∑
i∈IK

(m̂i −mi)/J0

∣∣∣∣∣+
(
K−1/2

K∑
k=1

|Î1,k||I1,k|

)
×Op(1) ,

(3)
= op(1) + op(1)×Op(1) ,
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where (1) holds by triangular inequality used on (E.1) and definition of I1,k, (2) holds

by definition of Î1,k and part 2 of Lemma E.1, and (3) hold by part 3 of Lemma C.2

and (E.2) presented below,

K−1/2

K∑
k=1

|Î1,k||I1,k| = op(1) . (E.2)

I use Taylor expansion and the mean value theorem to write Î1,k = Î1,1,k + Î1,2,k

and I1,k = n
−1/2
k (I1,1,k + I1,2,k + I1,3,k), where

Î1,1,k = n
−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤∂ηmi/J0 ,

Î1,2,k = n
−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤(∂2ηm̃i/(2J0))(η̂i − ηi)/J0 ,

I1,1,k = n
−1/2
k

∑
i∈IK

(ψa
i − J0)/J0 ,

I1,2,k = n
−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤∂ηψ

a
i /J0 ,

I1,3,k = n
−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤∂2ηψ̃

a
i /(2J0)(η̂i − ηi) ,

with ∂2ηm̃i = ∂2ηm(Wi, θ0, η̃i) for some η̃i, due to mean value theorem, and similar for

∂2ηψ̃
a
i . In what follows I prove K−1/2

∑K
k=1 n

−1/2
k |Î1,j1,k||I1,j2,k| = op(1) for j1 = 1, 2

and j2 = 1, 2, 3, which is sufficient to prove (E.2).

Claim 1.1: K−1/2
∑K

k=1 n
−1/2
k |Î1,1,k||I1,1,k| = op(1). Consider the following

K−1/2

K∑
k=1

n
−1/2
k |Î1,1,k||I1,1,k|

(1)

≤ max
k=1,...,K

∣∣∣∣∣n−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤∂ηmi/J0

∣∣∣∣∣× n−1/2

K∑
k=1

|I1,1,k|

(2)
= op(1)× (n−1/2K)×Op(1)

(3)
= op(1) ,

where (1) holds by definition of Î1,1,k, (2) holds by Lemma C.3 and the derivation
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presented below, and (3) holds since K = O(n1/2).

E

[
n−1/2

K∑
k=1

|I1,1,k|

]
(1)
= n−1/2KE[|I1,1,k|]

(2)

≤ n−1/2KE

(n−1/2
k

∑
i∈Ik

(ψa
i − J0)/J0

)2
1/2

(3)

≤ n−1/2KO(1)

where (1) holds since I1,1,k are i.i.d. random variables, (2) holds by Jensen’s inequality

and definition of I1,1,k, and (3) holds since {ψa
i − J0 : i ∈ Ik} are zero mean i.i.d.

random variables and by parts (a) and (c) of Assumption 3.1.

Claim 1.2: K−1/2
∑K

k=1 n
−1/2
k |Î1,1,k| × |I1,2,k| = op(1). It follows by

K−1/2

K∑
k=1

n
−1/2
k |Î1,1,k||I1,2,k| ≤ max

k=1,...,K
|Î1,1,k| × max

k=1,...,K
|I1,2,k| × n−1/2K

(1)
= op(1)× op(1)×O(1)

where (1) holds by Lemma C.3 and because K = O(n1/2).

Claim 1.3: K−1/2
∑K

k=1 n
−1/2
k |Î1,1,k||I1,3,k| = op(1). It follows by

K−1/2

K∑
k=1

n
−1/2
k |Î1,1,k||I1,3,k| ≤ max

k=1,...,K
|Î1,1,k| × n−1/2

K∑
k=1

∣∣∣∣∣n−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤∂2ηψ̃

a
i /(2J0)(η̂i − ηi)

∣∣∣∣∣
(1)

≤ max
k=1,...,K

|Î1,1,k| × n−1/2

K∑
k=1

(C2p/(2|J0|))× n
−1/2
k

∑
i∈Ik

||η̂i − ηi||2

= max
k=1,...,K

|Î1,1,k| × (C2p/(2|J0|)(Kn−1/2)1/2n1/4n−1

n∑
i=1

||η̂i − ηi||2

(2)
= op(1)×O(1)× n1/4 ×Op(n

−2min{φ1,φ2})

(3)
= op(1)

where (1) holds by part (e) of Assumption 3.1 and Loeve’s inequality (Davidson (1994,

Theorem 9.28)), (2) holds by Lemmas C.3 and C.4 and because K = O(n1/2), and
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(3) holds since min{φ1, φ2} > 1/4.

Claim 1.4: K−1/2
∑K

k=1 n
−1/2
k |Î1,2,k||I1,1,k| = op(1). Consider the following derivations,

n−1/2

K∑
k=1

|Î1,2,k||I1,1,k|

(1)

≤ n−1/2

 K∑
k=1

∣∣∣∣∣n−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤(∂2ηm̃i/(2J0))(η̂i − ηi)/J0

∣∣∣∣∣
2
1/2(

K∑
k=1

|I1,1,k|2
)1/2

(2)

≤ (C2p/2)n
−1/2
k

(
K∑
k=1

|n−1/2
k

∑
i∈IK

||η̂i − ηi||2|2
)1/2

K−1/2

(
K∑
k=1

|I1,1,k|2
)1/2

(3)

≤ (C2p/2)K
1/2

(
K∑
k=1

n−1
∑
i∈IK

||η̂i − ηi||4
)1/2(

K−1

K∑
k=1

|I1,1,k|2
)1/2

(4)
= (Kn−1/2)1/2n1/4 ×Op(n

−2min{φ1,φ2})×

(
K−1

K∑
k=1

|I1,1,k|2
)1/2

(5)
= O(1)× n1/4 ×Op(n

−2min{φ1,φ2})×Op(1)

(6)
= op(1)

where (1) holds by Cauchy-Schwartz and definition of Î1,2,k, (2) holds by part (e) of

Assumption 3.1 and Loeve’s inequality (Davidson (1994, Theorem 9.28)), (3) holds

by Jensen’s inequality, (4) holds by Lemma C.4, (5) holds because K = O(n1/2),

E[K−1
∑K

k=1 |I1,1,k|2] = O(1) by definition of I1,1,k and due to parts (a) and (c) of

Assumption 3.1, and (6) holds since min{φ1, φ2} > 1/4.

Claim 1.5: K−1/2
∑K

k=1 n
−1/2
k |Î1,2,k||I1,2,k| = op(1). The proof is similar to the proof

of Claim 1.3; therefore, it is omitted.

Claim 1.6: K−1/2
∑K

k=1 n
−1/2
k |Î1,2,k| × |I1,3,k| = op(1). Consider the derivations,

K−1/2

K∑
k=1

n
−1/2
k |Î1,2,k||I1,3,k|

(1)

≤ n−1/2

K∑
k=1

(C2p/(2|J0|))2 ×

(
n
−1/2
k

∑
i∈Ik

||η̂i − ηi||2
)2

(2)

≤ (C2p/(2J0))
2 × n1/2n−1

K∑
k=1

∑
i∈Ik

||η̂i − ηi||4

(3)
= (C2p/(2J0))

2 × n1/2 ×Op(n
−4min{φ1,φ2})
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(4)
= op(1) ,

where (1) holds by using the definition of Î1,2,k and I1,3,k, part (e) of Assumption

3.1, and Loeve’s inequality (Davidson (1994, Theorem 9.28)), (2) holds by Jensen’s

inequality, (3) holds by Lemma C.4, and (4) holds since min{φ1, φ2} > 1/4.

Claim 2: I2 = op(1). Consider the following representation of I2,

I2 = K−1/2

K∑
k=1

(
n
−1/2
k

∑
i∈IK mi

)(
n−1
k

∑
i∈Ik ψ

a
i − ψ̂a

i

)
(
n−1
k

∑
i∈IK ψ̂

a
i

) (
n−1
k

∑
i∈Ik ψ

a
i

)
= K−1/2

K∑
k=1

n
−1/2
k I2,kÎ2,k(

n−1
k

∑
i∈IK ψ̂

a
i /J0

) (
n−1
k

∑
i∈Ik ψ

a
i /J0

) ,
where

I2,k = n
−1/2
k

∑
i∈IK

mi/J0

Î2,k = n
−1/2
k

∑
i∈Ik

(ψa
i − ψ̂a

i )/J0 .

To show the claim, consider the following derivation

|I2|
(1)

≤ max
k=1,...,K

∣∣∣∣∣n−1
k

∑
i∈IK

ψ̂a
i /J0

∣∣∣∣∣
−1

× max
k=1,...,K

∣∣∣∣∣n−1
k

∑
i∈IK

ψa
i /J0

∣∣∣∣∣
−1

×K−1

K∑
k=1

n
−1/2
k |I2,k||Î2,k|

(2)
= Op(1)×Op(1)× op(1) ,

where (1) holds by triangular inequality and definition of I2, and (2) by Lemma E.1

and (E.3) presented below,

K−1

K∑
k=1

n
−1/2
k |Î2,k||I2,k| = op(1) . (E.3)

As in the proof of claim 1, I use Taylor approximation and mean value theorem to
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write Î2,k = Î2,1,k + Î2,2,k, where

Î2,1,k = n
−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤∂ηψ

a
i /J0 ,

Î2,2,k = n
−1/2
k

∑
i∈IK

(η̂i − ηi)
⊤(∂2ηψ̃

a
i /(2J0))(η̂i − ηi)/J0 .

Finally, in what follows I prove K−1/2
∑

k=1 n
−1/2
k |Î2,j,k||I2,k| = op(1) for j = 1, 2,

which is sufficient to prove (E.3).

Claim 2.1: K−1/2
∑K

k=1 n
−1/2
k |Î2,1,k||I2,k| = op(1). The proof is similar to the one in

Claim 1.1; therefore, it is omitted.

Claim 2.2: K−1/2
∑K

k=1 n
−1/2
k |Î2,2,k||I2,k| = op(1). The proof is similar to the one in

Claim 1.4; therefore, it is omitted.

E.2 Proof of Theorem C.2

Proof. Notation: In the proof of this theorem, xn,K = op(1) denotes a sequence of ran-

dom variables xn,K converging to zero uniformly on K → ∞ as n→ ∞ (equivalently,

limn→∞ supK≤n P (|xn,K | > ϵ) = 0 for any given ϵ > 0).

Using the definitions of the DML2 estimator in (2.7) and the moment function m

in (2.2), it follows

n1/2
(
θ̂n,2 − θ0

)
=
n−1/2

∑n
i=1 m̂i

n−1
∑n

i=1 ψ̂
a
i

,

and similarly for the oracle version defined in (2.9),

n1/2
(
θ̂∗n,2 − θ0

)
=
n−1/2

∑n
i=1mi

n−1
∑n

i=1 ψ
a
i

.

Using the previous two expressions, it follows

n1/2
(
θ̂n,2 − θ̂∗n,2

)
= I1 + I2
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where

I1 =
n−1/2

∑n
i=1(m̂i −mi)/J0

n−1
∑n

i=1 ψ̂
a
i /J0

(E.4)

I2 =

(
n−1/2

∑n
i=1mi/J0

) (
n−1

∑n
i=1(ψ

a
i − ψ̂a

i )/J0

)
(
n−1

∑n
i=1 ψ̂

a
i /J0

)
(n−1

∑n
i=1 ψ

a
i /J0)

(E.5)

In what follows, I show that I1 = T l
n,K+T nl

n,K+op(n
−ζ) and I2 = op(n

−ζ), which is suffi-

cient to complete the proof of the theorem since both T l
n,K and T nl

n,K are Op(n
−φ1) and

Op(n
1/2−2φ1), respectively, under Assumptions 3.1 and 3.2 and by the proof of Proposi-

tions C.4 and C.5. Furthermore, if Assumption 3.3 holds, part 2 of Proposition C.5 im-

plies Var[n2φ1−1/2T nl
n,K ] = Gδ(K

2−3K+3)(K−1)−1−4φ1K4φ1−1+n4φ1−1rnln,K , which im-

plies that limn→∞ infK≤n Var[n
2φ1−1/2T nl

n,K ] > 0. Part 1 of Proposition C.5 implies that

supK≤n |n2φ1−1/2E[T nl
n,K ]| < ∞; then, limn→∞ supK≤nE[(n

2φ1−1/2T nl
n,K)

2] < ∞. Simi-

larly, the proof of Propositions C.4 guarantees limn→∞ supK≤nE[(n
φ1T l

n,K)
2] <∞.

Claim 1: I1 = T l
n,K + T nl

n,K + op(n
−ζ). I first rewrite the RHS of (E.4) using the

identity a(1 + b)−1 = a − ab(1 + b)−1, where a = n−1/2
∑n

i=1(m̂i − mi)/J0 and b =

n−1
∑n

i=1(ψ̂
a
i − J0)/J0. That is

I1 = a− ab(1 + b)−1

I then conclude the proof of the claim by using claims 1.1 and 1.2, stated below.

Claim 1.1: a = T l
n,K + T nl

n,K + op(n
−ζ). This result holds by part 4 of Lemma C.2

since a = n−1/2
∑n

i=1(m̂i −mi)/J0.

Claim 1.2: ab(1 + b)−1 = op(n
−ζ). Note that part 4 of Lemma C.2 implies a =

Op(n
1/2−2φ1). Note also that part 2 of Lemma C.2 and CLT imply b = Op(n

−1/2),

which guarantees that (1 + b)−1 = Op(1); therefore, ab(1 + b)−1 = Op(n
−2φ1), which

is op(n
−ζ) since φ1 < 1/2.

Claim 2: I2 = op(n
−ζ). I first rewrite I2 defined in (E.5) as follows,

I2 = ab(1 + c− b)−1(1 + c)−1 ,

where a = n−1/2
∑n

i=1mi/J0, b = n−1
∑n

i=1(ψ
a
i − ψ̂a

i )/J0, and c = n−1
∑n

i=1(ψ
a
i −
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J0)/J0. CLT implies that a = Op(1) and c = Op(n
−1/2). Part 2 of Lemma C.2 implies

b = Op(n
−2φ1). Therefore, ab = Op(n

−2φ1), and both (1 + c− b)−1 and (1 + c)−1 are

Op(1). This implies I2 is Op(n
−2φ1), which is op(n

−ζ) since φ1 < 1/2.

E.3 Proof of Proposition C.1

Proof. Part 1: By the definition of the oracle version of the DML1 estimator in (2.8)

and the moment function m in (2.2), it follows

n1/2
(
θ̂∗n,1 − θ0

)
= K−1/2

K∑
k=1

n
−1/2
k

∑
i∈IK mi

n−1
k

∑
i∈IK ψ

a
i

. (E.6)

I first rewrite the RHS of (E.6) using the identity ak(1 + bk)
−1 = ak − akbk +

akb
2
k(1+ bk)

−1 with ak = n
−1/2
k

∑
i∈Ik mi/J0 and bk = n−1

k

∑
i∈Ik(ψ

a
i − J0)/J0. That is

n1/2
(
θ̂∗n,1 − θ0

)
= I1 + I2 + I3 ,

where

I1 = K−1/2

K∑
k=1

ak

I2 = −K−1/2

K∑
k=1

akbk

I3 = K−1/2

K∑
k=1

akb
2
k(1 + bk)

−1

By CLT, it follows I1 = n−1/2
∑n

i=1mi/J0
d→ N(0, σ2) as n → ∞, where σ2 is as in

(2.11). Therefore, if I2 −K/
√
nΛ and I3 are op(1), then

n1/2
(
θ̂∗n,1 − θ0

)
= n−1/2

n∑
i=1

mi/J0 +K/
√
nΛ + op(1) ,

which is sufficient to complete the proof of part 1 since K/
√
n → c as n → ∞. In

what follows, Claim 1 shows I2 −K/
√
nΛ = op(1) and Claim 2 shows I3 are op(1).
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Claim 1: I2 −K/
√
nΛ = op(1). First, note that E[−akbk] = K1/2/

√
nΛ due to the

following derivations,

E[akbk]
(1)
= E

[(
n
−1/2
k

∑
i∈Ik

mi/J0

)(
n−1
k

∑
i∈Ik

(ψa
i − J0)/J0

)]
(2)
= n

−1/2
k E [(mi/J0) ((ψ

a
i − J0)/J0)]

(3)
= −n−1/2K1/2Λ

where (1) holds by definition of ak and bk, (2) holds since {(mi, ψ
a
i − J0) : i ∈ Ik}

are zero mean i.i.d. random vectors, and (3) holds by the definition of Λ in (3.6) and

condition (2.1).

Therefore, E[I2] = −K−1/2
∑K

k=1E[akbk] = K/
√
nΛ, which implies that the claim

is equivalent to show that I2−E[I2] is op(1), which follows by the following derivations

E
[
(I2 − E[I2])

2] (1)
= E

(K−1/2

K∑
k=1

(akbk − E[akbk])

)2


(2)
= K−1

K∑
k=1

E
[
(akbk − E[akbk])

2]
(3)

≤ E
[
(akbk)

2]
(4)
= n−1

k E

(n−1/2
k

∑
i∈Ik

mi/J0

)2(
n
−1/2
k

∑
i∈Ik

(ψa
i − J0)/J0

)2


(5)

≤ n−1
k E

(n−1/2
k

∑
i∈Ik

mi/J0

)4
1/2

× E

(n−1/2
k

∑
i∈Ik

(ψa
i − J0)/J0

)4
1/2

(6)
= n−1

k ×O(1)×O(1)

where (1) holds by definition of I2; (2) and (3) hold since {akbk − E[akbK ] : 1 ≤
k ≤ K} are zero mean i.i.d random variables due to the definition of ak and bk; (4)

holds by definition of ak and bk; (5) holds by Cauchy-Schwartz; and (6) holds since

{(mi, ψ
a
i − J0) : i ∈ Ik} are zero mean i.i.d. random vectors, parts (a) and (c) of

Assumption 3.1, and nk → ∞. This completes the proof of Claim 1.
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Claim 2: I3 = op(1). Consider the following derivation

|I3|
(1)

≤ max
k=1,...,K

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa
i − J0)/J0

∣∣∣∣∣
−1

×K−1/2

K∑
k=1

|ak|b2k

= Op(1)× op(1) ,

where (1) holds by definition of I3 and triangular inequality, and (2) holds by Lemma

E.1 and (E.7) presented below,

K−1/2

K∑
k=1

|ak|b2k = op(1) . (E.7)

To prove (E.7), consider the following

E

[
K−1/2

K∑
k=1

|ak|b2k

]
(1)

≤ K−1/2

K∑
k=1

E[|ak|2]1/2E[|bk|4]1/2

(2)
= K1/2n−1

k E

(n−1/2
k

∑
i∈Ik

mi/J0

)2
1/2

× E

(n−1/2
k

∑
i∈Ik

(ψa
i − J0)/J0

)4
1/2

(3)
= (Kn−1/2)3/2n−1/4O(1)×O(1)

(4)
= o(1) ,

where (1) holds by Cauchy-Schwartz, (2) holds since {(ak, bk} : 1 ≤ k ≤ K} are i.i.d

random vectors and the definition of ak and bk, (3) holds since {(mi, ψ
a
i −J0) : i ∈ Ik}

are zero mean i.i.d. random vectors, and parts (a) and (c) of Assumption 3.1, and

(4) holds since K = O(n1/2). This completes the proof of Claim 2.

Part 2: By the definition of θ̂∗n,2 in (2.9), and the moment function m in (2.2), it

follows

n1/2
(
θ̂∗n,2 − θ0

)
=
n−1/2

∑n
i=1mi/J0

n−1
∑n

i=1 ψ
a
i /J0

Since the denominator converges to 1 in probability by the LLN and the numerator

converges to N(0, σ2) in distribution due to the CLT, it follows that n1/2
(
θ̂∗n,2 − θ0

)
converges in distribution to N(0, σ2). This completes the proof of part 2

11



E.4 Proof of Proposition C.2

Proof. Part 1: By the definition of the oracle version of DML2 estimator in (2.9),

and the moment function m in (2.2), it follows

n1/2
(
θ̂∗n,2 − θ0

)
=
n−1/2

∑n
i=1mi

n−1
∑n

i=1 ψ
a
i

. (E.8)

I rewrite the RHS of (E.8) using the identity a(1 + b)−1 = a − ab + ab2(1 + b)−1

with a = n−1/2
∑n

i=1mi/J0 and b = n−1
∑n

i=1(ψ
a
i − J0)/J0. That is

n1/2
(
θ̂∗n,2 − θ0

)
= a− ab+ ab2(1 + b)−1

(1)
= T ∗

n + T dml2
n + ab2(1 + b)−1

where (1) holds by the definition of T ∗
n and T dml2

n . It is sufficient to show ab2(1+ b)−1

is Op(n
−1) to complete the proof, which follows by CLT that implies a = Op(1) and

b = Op(n
−1/2), and (1 + b)−1 = Op(1).

Finally, consider the following derivations

E[T dml2
n ]

(1)
= −n−1/2E

[(
n−1/2

n∑
i=1

mi/J0

)(
n−1/2

n∑
i=1

(ψa
i − J0)/J0

)]
(2)
= −n−1/2Λ

where (1) holds by the definition of T dml2
n , and (2) holds since {(mi, (ψ

a
i − J0)/J0) :

1 ≤ i ≤ n} are zero mean i.i.d. random vectors and by the definition of Λ in (3.6).

Part 2: By definition of σ2 and since {(mi/J0) : 1 ≤ i ≤ n} are zero mean i.i.d.

random variables, it follows that E[T ∗
n ] = 0 and E[(T ∗

n )
2] = σ2.

Part 3: First note that Cov(T ∗
n , T dml2

n ) = E[(T ∗
n )(T dml2

n )]. Now, consider the follow-

ing derivations,

E[(T ∗
n )(T dml2

n )]
(1)
= −n−1/2E

(n−1/2

n∑
i=1

mi/J0

)2(
n−1/2

n∑
i=1

(ψa
i − J0)/J0

)
(2)
= −n−1E

[
(mi/J0)

2 ((ψa
i − J0)/J0)

]
12



(3)
= −n−1Ξ1

where (1) holds by definition of T ∗
n and T dml2

n , (2) holds since {(mi/J0, (ψ
a
i −J0)/J0) :

1 ≤ i ≤ n} are zero mean i.i.d. random vectors, and (3) holds by definition of Ξ1 in

(C-1).

Similarly, consider the following derivations

V ar[T dml2
n ]

(1)
= n−1E

(n−1/2

n∑
i=1

mi/J0

)2(
n−1/2

n∑
i=1

(ψa
i − J0)/J0

)2
− n−1Λ2

(2)
= n−1

(
E[(mi/J0)

2]E[((ψa
i − J0)/J0)

2] + 2Λ2 +O(n−1)
)
− n−1Λ2

(3)
= n−1(σ2σ2

a + Λ2) +O(n−2)

where (1) holds by definition of T dml2
n and Λ in (A-4) and (3.6), respectively, (2)

holds since {(mi/J0, (ψ
a
i − J0)/J0) : 1 ≤ i ≤ n} are zero mean i.i.d. random vectors

and by definition of Λ, and (3) holds by definition of σ2 and σ2
a in (2.11) and (C-2),

respectively.

E.5 Proof of Proposition C.3

Proof. For i ∈ Ik, denote ∆i = ∆b
i +∆l

i, where

∆l
i = n−φ1

0 n
−1/2
0

∑
j /∈Ik

δn0,j,i ,

∆b
i = n−φ2

0 n−1
0

∑
j /∈Ik

bn0,j,i ,

Here, δn0,j,i = δn0(Wj, Xi) and bn0,j,i = bn0(Xj, Xi), and δn0 and bn0 are functions

satisfying Assumption 3.2.

Part 1: Using the previous notation, it holds that E[(∆i)
⊤∂ηmi/J0] = 0. To see this,

consider the following derivations

E[(∆i)
⊤∂ηmi/J0]

(1)
= E

[
(∆i)

⊤E [∂ηmi/J0 | (Wj : j /∈ Ik), Xi]
]

(2)
= E

[
(∆i)

⊤E [∂ηmi/J0 | Xi]
]

13



(3)
= 0 ,

where (1) holds by the law of interactive expectations and because ∆i is non-stochastic

conditional on (Wj : j /∈ Ik) and Xi, (2) holds since {Wj : 1 ≤ j ≤ n} are i.i.d.

random vectors and i ∈ Ik, and (3) holds by the Neyman orthogonality condition

(part (b) of Assumption 3.1).

Therefore, E[T l
n,K ] = 0 holds due to the definition of T l

n,K in (A-3) and the previous

result,

E[T l
n,K ] = n−1/2

n∑
i=1

E[(∆i)
⊤∂ηmi/J0]

= 0 .

Part 2: By part 1, Var[T l
n,K ] = E[(T l

n,K)
2]. Now, consider the following decomposi-

tion:

E[(T l
n,K)

2] = E

(n−1/2

n∑
i=1

(∆i)
⊤∂ηmi/J0

)2


= n−1

n∑
i1=1

n∑
i2=1

E
[(
(∆i1)

⊤∂ηmi1/J0
) (

(∆i2)
⊤∂ηmi2/J0

)]
= I1 + 2I2 + I3 ,

where I use ∆i = ∆l
i +∆b

i in the last equality, with I1, I2, and I3 defined below,

I1 = n−1

n∑
i1=1

n∑
i2=1

E
[(
(∆l

i1
)⊤∂ηmi1/J0

) (
(∆l

i2
)⊤∂ηmi2/J0

)]
I2 = n−1

n∑
i1=1

n∑
i2=1

E
[(
(∆l

i1
)⊤∂ηmi1/J0

) (
(∆b

i2
)⊤∂ηmi2/J0

)]
I3 = n−1

n∑
i1=1

n∑
i2=1

E
[(
(∆b

i1
)⊤∂ηmi1/J0

) (
(∆b

i2
)⊤∂ηmi2/J0

)]
In what follows, I show I1 = n−2φ1

0 Gl
δ + o(n−2φ1) with Gl

δ defined as in (A-6), I2 = 0,
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and I3 = O(n−2φ1), which is sufficient to complete the proof of Part 2.

Claim 1: I1 = n−2φ1

0 Gl
δ + o(n−2φ1). Consider the following derivations,

I1

= n−1

n∑
i1=1

n∑
i2=1

E
[(
(∆l

i1
)⊤∂ηmi1/J0

) (
(∆l

i2
)⊤∂ηmi2/J0

)]
= n−1

K∑
k1,k2=1

∑
i1∈Ik1

∑
i2∈Ik2

n−2φ1

0 n−1
0

∑
j1 /∈Ik1

∑
j2 /∈Ik2

E
[(
δ⊤n0,j1,i1

∂ηmi1/J0
) (
δ⊤n0,j2,i2

∂ηmi2/J0
)]

(1)
= n−1

K∑
k1,k2=1

∑
i1∈Ik1

∑
i2∈Ik2

n−2φ1

0 n−1
0

∑
j1 /∈Ik1

∑
j2 /∈Ik2

E
[(
δ⊤n0,j1,i1

∂ηmi1/J0
) (
δ⊤n0,j2,i2

∂ηmi2/J0
)]
I{k1 ̸= k2}

+ n−1

K∑
k=1

∑
i1∈Ik

∑
i2∈Ik

n−2φ1

0 n−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E
[(
δ⊤n0,j1,i1

∂ηmi1/J0
) (
δ⊤n0,j2,i2

∂ηmi2/J0
)]
I{i1 ̸= i2}

+ n−1

K∑
k=1

∑
i∈Ik

n−2φ1

0 n−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E
[(
δ⊤n0,j1,i

∂ηmi/J0
) (
δ⊤n0,j2,i

∂ηmi/J0
)]

(2)
= n−1

K∑
k1,k2=1

∑
i1∈Ik1

∑
i2∈Ik2

n−2φ1

0 n−1
0 E

[(
δ⊤n0,i2,i1

∂ηmi1/J0
) (
δ⊤n0,i1,i2

∂ηmi2/J0
)]
I{k1 ̸= k2}

+ n−1

K∑
k=1

∑
i1∈Ik

∑
i2∈Ik

n−2φ1

0 n−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E
[(
δ⊤n0,j1,i1

∂ηmi1/J0
) (
δ⊤n0,j2,i2

∂ηmi2/J0
)]
I{i1 ̸= i2}

+ n−1

K∑
k=1

∑
i∈Ik

n−2φ1

0 n−1
0

∑
j /∈Ik

E
[(
δ⊤n0,j,i

∂ηmi/J0
) (
δ⊤n0,j,i

∂ηmi/J0
)]

(3)
= n−1

K∑
k1,k2=1

∑
i1∈Ik1

∑
i2∈Ik2

n−2φ1

0 n−1
0 E

[(
δ⊤n0,i2,i1

∂ηmi1/J0
) (
δ⊤n0,i1,i2

∂ηmi2/J0
)]
I{k1 ̸= k2}

+ n−1

K∑
k=1

∑
i∈Ik

n−2φ1

0 n−1
0

∑
j /∈Ik

E
[(
δ⊤n0,j,i

∂ηmi/J0
) (
δ⊤n0,j,i

∂ηmi/J0
)]

(4)
= n−1

K∑
k1=1

∑
i1∈Ik1

∑
i2 /∈Ik1

n−2φ1

0 n−1
0 E

[(
δ⊤n0,i2,i1

∂ηmi1/J0
) (
δ⊤n0,i1,i2

∂ηmi2/J0
)]

+ n−2φ1

0 E
[(
δ⊤n0,j,i

∂ηmi/J0
) (
δ⊤n0,j,i

∂ηmi/J0
)]

(5)
= n−2φ1

0

(
E
[(
δ⊤n0,i2,i1

∂ηmi1/J0
) (
δ⊤n0,i1,i2

∂ηmi2/J0
)]

+ E
[(
δ⊤n0,j,i

∂ηmi/J0
) (
δ⊤n0,j,i

∂ηmi/J0
)])
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(6)
= n−2φ1

0 Gl
δ + o(n−2φ1) ,

where (1) holds because there are 3 possible situations for i1 ∈ Ik1 and i2 ∈ Ik2 : i)

k1 ̸= k2, ii) k1 = k2 but i1 ̸= i2, and iii) i1 = i2, (2) holds by the law of iterative

expectations and since

E
[(
δ⊤n0,i2,i1

∂ηmi1/J0
) (
δ⊤n0,i1,i2

∂ηmi2/J0
)
| Xi1 ,Wi2 ,Wj1 ,Wj2

]
= 0 , when i1 ̸= j2

and

E
[(
δ⊤n0,i2,i1

∂ηmi1/J0
) (
δ⊤n0,i1,i2

∂ηmi2/J0
)
| Xi2 ,Wi1 ,Wj1 ,Wj2

]
= 0 , when i2 ̸= j1 ,

(3) holds by the law of iterative expectations and since

E
[(
δ⊤n0,j1,i1

∂ηmi1/J0
) (
δ⊤n0,j2,i2

∂ηmi2/J0
)
| Xi2 ,Wi1 ,Wj1 ,Wj2

]
= 0 ,when i1 ̸= i2 ,

(4) holds since {
(
δ⊤n0,j,i

∂ηmi/J0
)
: j /∈ Ik} are i.i.d. random variables conditional

on Wi (here I use i ∈ Ik), by noting that
∑K

k2=1 Ik2 ̸=k1

∑
i2∈Ik2

(·) =
∑

i2 /∈Ik1
(·), and

recalling that n0 is the number of observations outside the fold Ik, (5) holds because

the random variables {
(
δ⊤n0,i2,i1

∂ηmi1/J0
) (
δ⊤n0,i1,i2

∂ηmi2/J0
)
: i1 ̸= i2} are identically

distributed, and (6) holds by the definition of Gl
δ in (A-6) and n/2 ≤ n0 ≤ n. This

completes the proof of claim 1.

Claim 2: I2 = 0. First, consider the following derivations

E
[(
(∆l

i1
)⊤∂ηmi1/J0

) (
(∆b

i2
)⊤∂ηmi2/J0

)]
(1)
= n−φ1−φ2

0 n
−3/2
0

∑
j1 /∈Ik1

∑
j2 /∈Ik2

E
[(
δ⊤n0,j1,i1

∂ηmi1/J0
) (
b⊤n0,j2,i2

∂ηmi2/J0
)]

(2)
= 0 ,

where (1) holds by definition of ∆l
i and ∆b

i , and (2) holds by considering 3 possible

cases:

• If j1 ̸= i2 and j1 ̸= j2 (j1 different than all other sub-indices), then

E
[(
δ⊤n0,j1,i1

∂ηmi1/J0
) (
b⊤n0,j2,i2

∂ηmi2/J0
)
| Wi1 ,Wi2 ,Wj2

]
= 0 ,
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since E[δn0,j1,i1 | Wi1 ,Wi2 ,Wj2 ] = 0 due to part (a) of Assumption 3.2.

• If j1 = i2, then i2 ̸= i1 (otherwise j1 ∈ Ik) and

E
[(
δ⊤n0,i2,i1

∂ηmi1/J0
) (
b⊤n0,j2,i2

∂ηmi2/J0
)
| Wi2 , Xi1 ,Wj2

]
= 0 ,

since E[δn0,i2,i1 | Wi1 , Xi2 ,Wj2 ] = 0 due to part (a) of Assumption 3.2.

• If j1 = j2 = j, then

E
[(
δ⊤n0,j,i1

∂ηmi1/J0
) (
b⊤n0,j,i2

∂ηmi2/J0
)
| Xj,Wi1 ,Wi2

]
= 0 ,

since E[δn0,j,i1 | Xj,Wi1 ,Wi2 ] = 0 due to part (a) of Assumption 3.2.

Therefore,

I1,2 = n−1

n∑
i1=1

n∑
i2=1

E
[(
(∆l

i1
)⊤∂ηmi1/J0

) (
(∆b

i2
)⊤∂ηmi2/J0

)]
= 0 ,

which completes the proof of claim 2.

Claim 3: I3 = O(n−2φ1). Algebra shows

I3 = n−1

n∑
i1=1

n∑
i2=1

E
[(
(∆b

i1
)⊤∂ηmi1/J0

) (
(∆b

i2
)⊤∂ηmi2/J0

)]
= n−1

K∑
k1,k2=1

∑
i1∈Ik1

∑
i2∈Ik2

n−2φ2

0 n−2
0

∑
j1 /∈Ik1

∑
j2 /∈Ik2

E
[(
b⊤n0,j1,i1

∂ηmi1/J0
) (
b⊤n0,j2,i2

∂ηmi2/J0
)]

(1)
= n−1

K∑
k1=1

∑
i1∈Ik1

∑
i2 /∈Ik1

n−2φ2

0 n−2
0 E

[(
b⊤n0,i2,i1

∂ηmi1/J0
) (
b⊤n0,i1,i2

∂ηmi2/J0
)]

+ n−1

K∑
k=1

∑
i∈Ik

n−2φ2

0 n−2
0

∑
j /∈Ik

E
[(
b⊤n0,j,i

∂ηmi/J0
) (
b⊤n0,j,i

∂ηmi/J0
)]

(2)
= n−1

0 E
[(
n−φ2

0 b⊤n0,j,i
∂ηmi/J0

) (
n−φ2

0 b⊤n0,i,j
∂ηmj/J0

)]
+ n−1

0 E
[(
n−φ2

0 b⊤n0,j,i
∂ηmi/J0

) (
n−φ2

0 b⊤n0,j,i
∂ηmi/J0

)]
,

(3)

≤ n−1
0

(
E
[(
n−φ2

0 b⊤n0,j,i
∂ηmi/J0

)2])1/2 (
E
[(
n−φ2

0 b⊤n0,i,j
∂ηmi/J0

)2])1/2
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+ n−1
0 E

[(
n−φ2

0 b⊤n0,j,i
∂ηmi/J0

)2]
(4)

≤ 2(pC̃1/C
2
0)n

−1
0 E

[
||n−φ2

0 bn0,j,i||2
]

(5)

≤ 2(pC̃1/C
2
0)n

−1
0 n1−2φ1

0 τn0

(6)
= o(n−2φ1) ,

where (1) uses the same argument to calculate I1, (2) holds since the random vectors

{
(
b⊤n0,i2,i1

∂ηmi1/J0, b
⊤
n0,i1,i2

∂ηmi2/J0
)
: i1 ̸= i2} are identically distributed, (3) holds by

Cauchy-Schwartz inequality, (4) holds by the inequalities (E.9) and (E.10) presented

below where C̃1 is a constant depending only on (C0, C1,M), (5) holds by part (b.4)

in Assumption 3.2, and (6) holds since n/2 ≤ n0 ≤ n and τn0 = o(1).

E
[(
n−φ2

0 b⊤n0,j,i
∂ηmi/J0

)2] ≤ (pC̃1/C
2
0)E

[
||n−φ2

0 bn0,j,i||2
]

(E.9)

E
[(
n−φ2

0 b⊤n0,i,j
∂ηmi/J0

)2] ≤ (pC̃1/C
2
0)E

[
||n−φ2

0 bn0,j,i||2
]

(E.10)

To verify (E.9) consider the following derivation,

E
[(
n−φ2

0 b⊤n0,j,i
∂ηmi/J0

)2] (1)
= E

[
n−φ2

0 b⊤n0,j,i
E
[
(∂ηmi/J0)(∂ηmi/J0)

⊤ | Xj, Xi

]
n−φ2

0 bn0,j,i

]
(2)

≤ (1/C2
0)E

[
n−φ2

0 b⊤n0,j,i
E
[
(∂ηmi)(∂ηmi)

⊤ | Xi

]
n−φ2

0 bn0,j,i

]
(3)

≤ p(C̃1/C
2
0)E

[
||n−φ2

0 bn0,j,i||2
]

where (1) holds by LIE and since bn0,j,i is non-random conditional on Xj and Xi, (2)

holds by part (a) of Assumption 3.1 and independence between Xi and Xj since i ̸= j,

and (3) holds by definition of euclidean norm and since ||E[(∂ηmi)(∂ηmi)
⊤ | Xi]||∞ ≤

C̃1 = C1(1 + M1/4/C0)
2 due to parts (d) in Assumption 3.1 and |θ0| ≤ M1/4/C0

(which holds by definition of θ0 and parts (a) and (c) of Assumption 3.1).

The verification of (E.10) follows the same previous derivations but reverting the

role of i and j. Lastly, it uses that E
[
||n−φ2

0 bn0,i,j||2
]
= E

[
||n−φ2

0 bn0,j,i||2
]
since bn0,j,i

and bn0,i,j have the same distribution for i ̸= j.

Part 3: By Cauchy-Schwartz, parts 3 of Proposition C.2, and part 2 of this

18



proposition,

Cov(T dml
n , T l

n,K) ≤
(
(Gl

δ)
1/2(K/(K − 1))φ1 + o(1)

)1/2 (
σ2σ2

a + Λ2 + o(1)
)1/2

n−φ1−1/2 ,

which implies the RHS is O(n−φ1−1/2), and this is o(n−2φ1) since φ1 < 1/2.

E.6 Proof of Proposition C.4

Proof. For i ∈ Ik, denote ∆i = ∆b
i +∆l

i, where

∆l
i = n−φ1

0 n
−1/2
0

∑
j /∈Ik

δn0,j,i ,

∆b
i = n−φ2

0 n−1
0

∑
j /∈Ik

bn0,j,i ,

Here, δn0,j,i = δn0(Wj, Xi) and bn0,j,i = bn0(Xj, Xi), and δn0 and bn0 are functions

satisfying Assumption 3.2. Denote Hi = ∂2ηmi/(2J0).

Part 1: Consider the following decomposition using the definition of T nl
n,K in (3.12),

E[T nl
n,K ] = n−1/2

n∑
i=1

E
[
∆⊤

i Hi∆i

]
= I1 + 2I2 + I3

where

I1 = n−1/2

n∑
i=1

E
[
(∆l

i)
⊤Hi∆

l
i

]
I2 = n−1/2

n∑
i=1

E
[
(∆b

i)
⊤Hi∆

l
i

]
I3 = n−1/2

n∑
i=1

E
[
(∆b

i)
⊤Hi∆

b
i

]
In what follows, I show I1 = n1/2n−2φ1

0 Fδ + o(n1/2−2φ1), I2 = 0, I3 = n1/2n−2φ2

0 Fb +

o(n1/2−2φ1), which is sufficient to complete the proof of Part 1 since n0 = ((K −
1)/K)n.
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Claim 1: I1 = n1/2n−2φ1

0 Fδ + o(n1/2−2φ1). Consider the following derivations,

E[(∆l
i)
⊤Hi∆

l
i]

(1)
= n−2φ1

0 n−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E[(δn0,j1,i)
⊤Hi(δn0,j2,i)]

(2)
= n−2φ1

0 n−1
0

∑
j /∈Ik

E[(δn0,j,i)
⊤Hi(δn0,j,i)]

(3)
= n−2φ1

0 E[(δn0,j,i)
⊤Hi(δn0,j,i)] ,

where (1) holds by definition of ∆l
i, and (2) and (3) hold since {δn0,j,i : j /∈ Ik} are

zero mean i.i.d. random vectors conditional on Wi due to part (a) of Assumption 3.2

(here I use that i ∈ Ik). Therefore,

I1 = n−1/2

n∑
i=1

E
[
(∆l

i)
⊤Hi(∆

l
i)
]

= n1/2n−2φ1

0 E[(δn0,j,i)
⊤Hi(δn0,j,i)]

(1)
= n1/2n−2φ1

0 Fδ + o(n1/2−2φ1)

where (1) holds by definition of Fδ in (3.3), Assumption A.1, and because n/2 ≤ n0 ≤
n. This completes the proof of claim 1.

Claim 2: I2 = 0. Consider the following derivations,

E[(∆b
i)

⊤Hi(∆
l
i)]

(1)
= n−φ2−φ1

0 n
−3/2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E[(bn0,j1,i)
⊤Hi(δn0,j2,i)]

(2)
= 0

where (1) holds by definition of ∆b
i and ∆l

i, and (2) holds since

E[(bn0,j1,i)
⊤(∂2ηmi/(2J0))(δn0,j2,i) | Xj2 , Xj1 ,Wi] = 0

due to part (a) of Assumption 3.2 ( E[δn0,j2,i | Xj2 ,Wi] = 0). Therefore,

I2 = n−1/2

n∑
i=1

E
[
(∆b

i)
⊤(∂2ηmi/(2J0))(∆

l
i)
]
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= 0 ,

which completes the proof of claim 2.

Claim 3: I3 = n1/2n−2φ2

0 Fb + o(n1/2−2φ1). Denote b̃n0,i = E[bn0,j,i | Xi] for j ̸= i.

Consider the following derivations,

E[(∆b
i)

⊤Hi(∆
l
i)]

(1)
= n−2φ2

0 n−2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E[(bn0,j1,i)
⊤Hi(bn0,j2,i)]

(2)
= n−2φ2

0 n−2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E[(bn0,j1,i − b̃n0,i)
⊤Hi(bn0,j2,i − b̃n0,i)]

+ n−2φ2

0 n−2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E[(bn0,j1,i − b̃n0,i)
⊤Hi(b̃n0,i)]

+ n−2φ2

0 n−2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E[(b̃n0,i)
⊤Hi(bn0,j2,i − b̃n0,i)]

+ n−2φ2

0 n−2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E[(b̃n0,i)
⊤Hi(b̃n0,i)]

(3)
= n−2φ2

0 n−1
0 E[(bn0,j,i − b̃n0,i)

⊤Hi(bn0,j,i − b̃n0,i)]

+ n−2φ2

0 E[(b̃n0,i)
⊤Hi(b̃n0,i)]

where (1) holds by definition of ∆b
i , (2) holds by adding and subtracting b̃n0,i, and (3)

holds since {bn0,j,i − b̃n0,i : j /∈ Ik} are zero mean i.i.d. random vectors conditional on

Wi, which implies E[(b̃n0,i)
⊤Hi(bn0,j,i − b̃n0,i) | Wi] = 0. Therefore,

I3 = n−1/2

n∑
i=1

E
[
(∆b

i)
⊤Hi(∆

b
i)
]

= n1/2n−1
0 n−2φ2

0 E[(bn0,j,i − b̃n0,i)
⊤Hi(bn0,j,i − b̃n0,i)] + n1/2n−2φ2

0 E[(b̃n0,i)
⊤Hi(b̃n0,i)]

(1)
= o(n1/2−2φ1) + n1/2n−2φ2

0 E[(b̃n0,i)
⊤Hi(b̃n0,i)]

(2)
= o(n1/2−2φ1) + n1/2n−2φ2

0 Fb + o(n1/2−2φ2)

(3)
= n1/2n−2φ2

0 Fb + o(n1/2−2φ1)

where (1) holds by (E.11) presented below and since n/2 ≤ n0 ≤ n, (2) holds by

definition of Fb in (3.4) and Assumption A.1, and (3) since φ1 ≤ φ2 and n/2 ≤ n0 ≤ n.

n−2φ2

0 E[(bn0,j,i − b̃n0,i)
⊤Hi(bn0,j,i − b̃n0,i)] = o(n1−2φ1) . (E.11)
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To verify (E.11) consider the following derivations,

|n−2φ2

0 E[(bn0,j,i − b̃n0,i)
⊤Hi(bn0,j,i − b̃n0,i)]|

(1)

≤ n−2φ2

0 (2C0)
−1E[|(bn0,j,i − b̃n0,i)

⊤∂2ηmi(bn0,j,i − b̃n0,i)|]
(2)

≤ (2C0)
−1(pC̃2)E[||n−φ2

0 bn0,j,i − n−φ2

0 b̃n0,i||2]
(3)

≤ 2(2C0)
−1(pC̃2)

(
E[||n−φ2

0 bn0,j,i||2] + E[||n−φ2

0 b̃n0,i||2]
)

(4)

≤ (pC̃2/C0)
(
n1−2φ1

0 τn0 + n−2φ2

0 M
1/2
1

)
(5)
= o(n1−2φ1) ,

where (1) holds by triangular inequality and part (a) of Assumption 3.1, (2) holds by

definition of euclidean norm and since ||E[∂2ηmi | Xi]||∞ ≤ C̃2 = C2(1+M
1/4/C0) due

to part (e) of Assumption 3.1 and |θ0| ≤M1/4/C0 (which holds by definition of θ0 and

parts (a) and (c) of Assumption 3.1), (3) holds by standard properties of euclidean

norm, (4) holds by parts (b.3) and (b.4) of Assumption 3.2 with τn0 = o(1), and (5)

holds since φ1 ≤ φ2 and n/2 ≤ n0 ≤ n.

Part 2: Consider the following decomposition,

T nl
n,K − E[T nl

n,K ] = Il,l + 2Il,b + Ib,b

where

Il,l = n−1/2

K∑
k=1

∑
i∈Ik

n−2φ1−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

(
δ⊤n0,j1,i

Hiδn0,j2,i − E[δ⊤n0,j1,i
Hiδn0,j2,i]

)
Il,b = n−1/2

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

(
δ⊤n0,j1,i

Hibn0,j2,i − E[δ⊤n0,j1,i
Hibn0,j2,i]

)
Ib,b = n−1/2

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

(
b⊤n0,j1,i

Hibn0,j2,i − E[b⊤n0,j1,i
Hibn0,j2,i]

)
which implies

V ar[T nl
n,K ] = E

[
(Il,l + 2Il,b + Ib,b)

2]
= E[I2l,l] + E[I2b,b] + 4E[I2l,b] + 2E[Il,lIb,b] + 4E[(Il,l + Ib,b)Il,b]
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In what follows, I show E[I2l,l] = Gδ(K
2− 3K +3)(K − 1)−2n1−4φ1

0 + o(n−ζ), E[I2b,b] =

o(n−ζ), and E[I2l,b] = o(n−ζ), which is sufficient to complete the proof of Part 2

since n0 = ((K − 1)/K)n and by Cauchy-Schwartz it holds E[Il,lIb,b] = o(n−ζ), and

E[(Il,l + Ib,b)Il,b] = o(n−ζ).

Claim 1: E[I2l,l] = Gδ(K
2− 3K +3)(K− 1)−2n1−4φ1

0 + o(n−ζ). Consider the following

notation

Γl,l
j1,j2,i

=
(
δ⊤n0,j1,i

Hiδn0,j2,i − E[δ⊤n0,j1,i
Hiδn0,j2,i]

)
.

Note that E[Γl,l
j1,j2,i

] = 0 by construction, and j1 ̸= j2 implies

E[δ⊤n0,j1,i
Hiδn0,j2,i] = 0 and Γl,l

j1,j2,i
= δ⊤n0,j1,i

Hiδn0,j2,i .

Therefore, E[Γl,l
j1,j2,i

| Wi,Wj1 , Xj2 ] = 0 and E[Γl,l
j1,j2,i

| Wi,Wj2 , Xj1 ] = 0 when j1 ̸= j2

due to part (a) of Assumption 3.2. Furthermore,∣∣∣E [(Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]∣∣∣ ≤ (pC̃2/C0)
2n1−2φ1

0 M1 , (E.12)

which follows by Cauchy-Schwartz, part (e) of Assumption 3.1, and part (b.2) of

Assumption 3.2, with C̃2 = C2(1 +M1/4/C0).

Using the previous notation, Il,l can be written as follows

Il,l = n−1/2

K∑
k=1

∑
i∈Ik

n−2φ1−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

Γl,l
j1,j2,i

(E.13)

and E[I2l,l] can be decompose in three terms

E[I2l,l] = E

n−1/2

K∑
k=1

∑
i∈Ik

n−2φ1−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

Γl,l
j1,j2,i

2
= E

n−1/2

K∑
k=1

∑
i∈Ik

n−2φ1−1
0

∑
j /∈Ik

Γl,l
j,j,i + n−1/2

K∑
k=1

∑
i∈Ik

n−2φ1−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

Γl,l
j1,j2,i

I{j1 ̸= j2}

2
= I1 + I2 + 2I3 ,
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where

I1 = E

n−1/2

K∑
k=1

∑
i∈Ik

n−2φ1−1
0

∑
j /∈Ik

Γl,l
j,j,i

2
I2 = E

n−1/2

K∑
k=1

∑
i∈Ik

n−2φ1−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

Γl,l
j1,j2,i

I{j1 ̸= j2}

2
I3 = E

n−1/2

K∑
k1=1

∑
i1∈Ik1

n−2φ1−1
0

∑
j1 /∈Ik1

Γl,l
j1,j2,i1

n−1/2

K∑
k2=1

∑
i2∈Ik2

n−2φ1−1
0

∑
j3 /∈Ik2

∑
j4 /∈Ik2

Γl,l
j3,j4,i2

I{j3 ̸= j4}


In what follows, I show that I1 = o(n−ζ), I2 = Gδ(K

2−3K+3)(K−1)−2n1−4φ1

0 +

o(n−ζ), and I3 = o(n−ζ), which is sufficient to complete the proof of Claim 1.

Claim 1.1 I1 = o(n−ζ). Consider the following expansion

I1 = n−1n−4φ1−2
0

K∑
k1=1

∑
i1∈Ik1

∑
j1 /∈Ik1

K∑
k2=1

∑
i2∈Ik

∑
j2 /∈Ik2

E
[(

Γl,l
j1,j1,i1

)(
Γl,l
j2,j2,i2

)]
= n−1n−4φ1−2

0

∑
(i1,i2,j1,i2)∈E

E
[(

Γl,l
j1,j1,i1

)(
Γl,l
j2,j2,i2

)]
,

where E = {(i1, i2, j1, j2) ∈ [n]4 : i1 ∈ Ik1 , i2 ∈ Ik2 , j1 /∈ Ik1 , j2 /∈ Ik2 , k1 ∈ [K], k2 ∈
[K]}, with [n] denoting {1, . . . , n}. Let E4 ⊆ [n]4 be the subset of indices with distinct

entries. (e.g., i1 /∈ {i2, j1, j2}, i2 /∈ {j1, j2}, j1 ̸= j2). Let E≤3 ⊂ [n]4 be the subset of

indices with at most three distinct entries.

Now, take (i1, i2, j1, j2) ∈ E ∩ E4. It follows that

E
[(

Γl,l
j1,j1,i1

)(
Γl,l
j2,j2,i2

)]
= E

[(
Γl,l
j1,j1,i1

)]
E
[(

Γl,l
j2,j2,i2

)]
= 0 ,

due to independence and by definition of Γl,l
j1,j1,i1

.

Therefore,

|I1| =

∣∣∣∣∣∣n−1n−4φ1−2
0

∑
(i1,i2,j1,i2)∈E\E4

E
[(

Γl,l
j1,j1,i1

)(
Γl,l
j2,j2,i2

)]∣∣∣∣∣∣
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(1)

≤ n−1n−4φ1−2
0

∑
(i1,i2,j1,i2)∈E≤3

∣∣∣E [(Γl,l
j1,j1,i1

)(
Γl,l
j2,j2,i2

)]∣∣∣
(2)

≤ n−1n−4φ1−2
0

∑
(i1,i2,j1,i2)∈E≤3

(pC̃2/C0)
2n1−2φ1

0 M1

(3)

≤ n−1n−4φ1−2
0 × 34n3 × (pC̃2/C0)

2n1−2φ1

0 M1

(4)
= O(n1−6φ1) ,

where (1) holds by triangular inequality and since E\E4 ⊂ E≤3, (2) holds by (E.12), (3)

holds since the number of elements of E3 is at most 34n3 (for each 3-tuple (a, b, c) ∈ [n]3

consider the functions from the positions {1, 2, 3, 4} into the possible values {a, b, c},
the number of all these functions is 34 and there number of 3-tuple is n3), and

(4) hold since n/2 ≤ n ≤ n. Therefore, I1 is O(n1−6φ1), which is o(n−ζ) since

6φ1 − 1 > 4φ1 − 1 ≥ ζ. This completes the proof of Claim 1.1.

Claim 1.2: I2 = Gδ(K
2 − 3K + 3)(K − 1)−2n1−4φ1

0 + o(n−ζ). Consider the following

expansion

I2 = n−1n−4φ1−2
0

K∑
k1=1

∑
i1∈Ik1

∑
j1,j2 /∈Ik1

K∑
k2=1

∑
i2∈Ik2

∑
j3,j4 /∈Ik2

E
[(

Γl,l
j1,j2,i1

I{j1 ̸= j2}
)(

Γl,l
j3,j4,i2

I{j3 ̸= j4}
)]

= n−1n−4φ1−2
0

∑
(i1,i2,j1,j2,j3,j4)∈E

E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]
,

where E = {(i1, i2, j1, j2, j3, j4) ∈ [n]6 : i1 ∈ Ik1 , i2 ∈ Ik2 ; j1, j2 /∈ Ik1 ; j3, j4 /∈ Ik1 ; j1 ̸=
j2; j3 ̸= j4; k1, k2 ∈ [K]}. Let E6 ⊆ [n]6 be the subset of indices with distinct entries.

Let E5 ⊆ [n]6 be the subset of indices with exactly five distinct entries, meaning that

two entries are identical while the remaining entries are distinct. Let E4 ⊆ [n]6 be the

subset of indices with exactly four distinct entries. Let E≤3 ⊂ [n]6 be the subset of

indices with at most three distinct entries. Note that [n]6 = E≤3 ∪ E4 ∪ E5 ∪ E6.

Now, take (i1, i2, j1, j2, j3, j4) ∈ E ∩ E6. It follows that

E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]
= 0 , (E.14)

since Γl,l
j1,j2,i1

and Γl,l
j3,j4,i2

are independent zero mean random variables.
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Now take (i1, i2, j1, j2, j3, j4) ∈ E ∩ E5. Without loss of generality, assume that j1

is different than all the other indices (otherwise, this statement holds with j2 or j3 or

j4). Then,

E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]
(1)
= E

[(
δ⊤n0,j1,i1

Hi1δn0,j2,i1

) (
δ⊤n0,j3,i2

Hi2δn0,j4,i2

)]
(2)
= E

[
E
[
δ⊤n0,j1,i1

| Wi1 ,Wi2 ,Wj2 ,Wj3 ,Wj4

]
(Hi1δn0,j2,i1)

(
δ⊤n0,j3,i2

Hi2δn0,j4,i2

)]
(3)
= 0 (E.15)

where (1) holds by definition of Γl,l
j1,j2,i1

and Γl,l
j3,j4,i2

since j1 ̸= j2 and j3 ̸= j4, (2) holds

by LIE, and (3) holds by part (a) of Assumption 3.2. Note that this argument can be

used whenever one js is different than all the other indices, for some s ∈ {1, 2, 3, 4}.

Now take (i1, i2, j1, j2, j3, j4) ∈ E ∩ E4. Suppose {a, b, c, d} are four different in-

dices, then there are two possible distributions for the 6-tuples: (i) two pairs, e.g.,

(a, a, b, b, c, d), or (ii) one triple, e.g., (a, a, a, b, c, d). Notice that for 6-tuples in (ii),

there exists one js different than all the other indices, for some s ∈ {1, 2, 3, 4}. In

this case, E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]
equals zero due to the argument described above.

Therefore, in what follows, I consider only 6-tuples in (i), specifically, the cases where

js appears in a pair for all s = 1, 2, 3, 4.

• Case 1: j1 = j3, j2 = j4, and i1 ̸= i2. Then,

E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]
= E

[(
δ⊤n0,j1,i1

Hi1δn0,j2,i1

) (
δ⊤n0,j1,i2

Hi2δn0,j2,i2

)]
(E.16)

To compute the number of indices (i1, i2, j1, j2, j1, j2) ∈ E in this case, recall

that i1 ∈ Ik1 and i2 ∈ Ik2 , therefore, there are two situations (i) k1 = k2 or

(ii) k1 ̸= k2. For the first situation, i1 can take n values, i2 can take nk − 1

values (since it is different than i1 but is in the same fold Ik), and j1 and j2

can take n0 and n0 − 1 values (since they are different but not in Ik). That is

n(nk−1)n0(n0−1) combinations. For the second situation, i1 can take n values,

i2 can take n0 values, then j1 and j2 take values in all the data except into the

two folds that contain i1 and i2 (since j1, j2 /∈ Ik1 and j1 = j3, j2 = j4 /∈ Ik2),

that is (n0−nk)(n0−nk−1). That is n(n−nk)(n0−nk)(n0−nk−1) combinations.
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Therefore, the total number of indices is equal to

nn3
0

(
K2 − 3K + 3

(K − 1)2
− 2n−1

0 + n−2
0

)
(E.17)

• Case 2: j1 = j4, j2 = j3, and i1 ̸= i2. Then,

E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]
= E

[(
δ⊤n0,j1,i1

Hi1δn0,j2,i1

) (
δ⊤n0,j1,i2

Hi2δn0,j2,i2

)]
.

The number of indices (i1, i2, j1, j2, j1, j2) ∈ E in this case is exactly the same

as in the previous case, which is presented in (E.17).

Finally, note that∣∣∣∣∣∣
∑

(i1,i2,j1,j2,j3,j4)∈E∪E≤3

E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]∣∣∣∣∣∣ ≤ 36n3(pC̃2/C0)n
1−2φ1

0 M1 , (E.18)

which follows by triangular inequality, (E.12), and by using that the number of el-

ements in E≤3 is lower or equal to 36n3 (for each 3-tuple (a, b, c) ∈ [n]3, consider

the functions from the positions {1, 2, 3, 4, 5, 6} into the possible values {a, b, c}, the
number of all these functions is 34, while the number of 3-tuple is n3).

In what follows, I use the preliminary findings to calculate I2 up to an error of

size o(n−ζ),

I2 = n−1n−4φ1−2
0

∑
(i1,i2,j1,j2,j3,j4)∈E

E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]
(1)
= n−1n−4φ1−2

0

∑
(i1,i2,j1,j2,j3,j4)∈E∩E4

E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]
+ n−1n−4φ1−2

0

∑
(i1,i2,j1,j2,j3,j4)∈E∪E≤3

E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]
(2)
= n−1n−4φ1−2

0

K∑
k1=1

∑
(i1,i2,j1,j2,j3,j4)∈E∩E4

E
[(

Γl,l
j1,j2,i1

)(
Γl,l
j3,j4,i2

)]
+O(n1−6φ1)

(3)
= n1−4φ1

0

(
K2 − 3K + 3

(K − 1)2
− 2n−1

0 + n−2
0

)
2E
[(
δ⊤n0,j1,i1

Hi1δn0,j2,i1

) (
δ⊤n0,j1,i2

Hi2δn0,j2,i2

)]
+O(n1−6φ1)

(4)
= n1−4φ1

0

(
K2 − 3K + 3

(K − 1)2

)
Gδ + o(n−ζ) ,
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where (1) holds by the derivations in (E.14) and (E.15), (2) holds by (E.18), (3)

holds by (E.16) that computes the expected value and (E.17) that calculates the

number of indices to consider, and (4) holds by definition of Gδ in (3.2), Assump-

tion A.1, n/2 ≤ n0 ≤ n, and since 6φ1−1 > ζ. This completes the proof of Claim 1.2.

Claim 1.3: I3 = o(n−ζ). First, claim 1.1 implies I1 is o(n−ζ). Second, claim 1.2 im-

plies I2 is O(n
−ζ) since 4φ1−1 ≥ ζ. Finally, then I3 is o(n

−ζ) due to Cauchy-Schwartz

( |I3| ≤ |I1|1/2|I2|1/2). This completes the proof of Claim 1.3.

Claim 2: E[I2b,b] = o(n−ζ). Consider the following notation,

Γb,b
j1,j2,i

= b⊤n0,j1,i
Hibn0,j2,i − E[b⊤n0,j1,i

Hibn0,j2,i] ,

where by construction E[Γb,b
j1,j2,i

] = 0. Denote b̃n0,i = E[bn0,j,i | Xi]. Note that if

j1 ̸= j2, then

Γb,b
j1,j2,i

= b⊤n0,j1,i
Hibn0,j2,i − E[b̃⊤n0,i

Hib̃n0,i] ,

Furthermore,

n−4φ2

0 E
[
|Γb,b

j1,j1,i
|2
]
≤ (pC̃2/C0)n

3(1−2φ1)
0 τn0 , (E.19)

which follows by C-S, part (e) of Assumption 3.1, and part (b.4) of Assumption 3.2,

with C̃2 = C2(1 +M1/4/C0). And, if j1 ̸= j2,

n−4φ2

0 E
[
|Γb,b

j1,j2,i
|2
]
≤ (pC̃2/C0)n

2(1−2φ1)
0 τn0 , (E.20)

which holds by C-S, part (e) of Assumption 3.1, and part (b.1) of Assumption 3.2.

The previous notation can be used to rewrite Ib,b as follows

E[I2b,b] = E

n−1/2

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

Γb,b
j1,j2,i

2
= E

n−1/2

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j /∈Ik

Γb,b
j,j,i + n−1/2

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

Γb,b
j1,j2,i

I{j1 ̸= j2}

2
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= I1 + I2 + 2I3

where

I1 = E

n−1/2

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j /∈Ik

Γb,b
j,j,i

2
I2 = E

n−1/2

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

Γb,b
j1,j2,i

I{j1 ̸= j2}

2
I3 = E

n−1/2

K∑
k1=1

∑
i∈Ik1

n−2φ2−2
0

∑
j1 /∈Ik1

Γb,b
j1,j1,i1

n−1/2

K∑
k2=1

∑
i2∈Ik2

n−2φ2−2
0

∑
j3 /∈Ik2

∑
j4 /∈Ik2

Γb,b
j3,j4,i

I{j3 ̸= j4}


In what follows, I show that I1 = o(n−ζ), I2 = o(n−ζ), and I3 = o(n−ζ), which is

sufficient to complete the proof of Claim 2.

Claim 2.1: I1 = o(n−ζ). Consider the following expansion,

I1 = n−1n−4φ2−4
0

K∑
k1=1

K∑
k2=1

∑
i1∈Ik1

∑
i2∈Ik2

∑
j1 /∈Ik1

∑
j2 /∈Ik2

E
[
Γb,b
j1,j1,i1

Γb,b
j2,j2,i2

]
= n−1n−4φ2−4

0

∑
(i1,i2,j1,j2)∈E

E
[
Γb,b
j1,j1,i1

Γb,b
j2,j2,i2

]
,

where E = {(i1, i2, j1, j2) ∈ [n]4 : i1 ∈ Ik1 , i2 ∈ Ik2 , j1 /∈ Ik1 , j2 /∈ Ik2 , k1 ∈ [K], k2 ∈
[K]}, with [n] denoting {1, . . . , n}. Let E4 ⊆ [n]4 be the subset of indices with distinct

entries. Let E≤3 ⊂ [n]4 be the subset of indices with at most three distinct entries.

Now, take (i1, i2, j1, j2) ∈ E ∩ E4. It follows that

E
[
Γb,b
j1,j1,i1

Γb,b
j2,j2,i2

]
= 0 ,

since Γb,b
j1,j1,i1

and Γb,b
j2,j2,i2

are zero mean independent random variables.

Now, take (i1, i2, j1, j2) ∈ E ∩ E≤3. Consider the following derivation,

n−4φ2

0

∣∣∣E [Γb,b
j1,j1,i1

Γb,b
j2,j2,i2

]∣∣∣ ≤ (pC̃2/C0)n
3(1−2φ1)
0 τn0 ,
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which follows by C-S and (E.19).

Therefore,∣∣∣∣∣∣n−1n−4φ2−4
0

∑
(i1,i2,j1,j2)∈E∩E≤3

E
[
Γb,b
j1,j1,i1

Γb,b
j2,j2,i2

]∣∣∣∣∣∣ ≤ n−1n−4
0 34n3(pC̃2/C0)n

3(1−2φ1)
0 τn0 ,

which uses that E≤3 has at most 34n3 elements (as in the proof of claim 1.1).

Using these two preliminary results, it follows that

I1 = o(n1−6φ1) ,

since τ̃n0 = o(1) and n/2 ≤ n0 ≤ n. This completes the proof of Claim 2.2 since

6φ1 − 1 > ζ.

Claim 2.2 : I2 = o(n−ζ). Consider the following expansion,

I2 = n−1n−4φ2−4
0

K∑
k1=1

∑
i1∈Ik1

K∑
k2=1

∑
i2∈Ik2

∑
j1,j2 /∈Ik1

∑
j3,j4 /∈Ik2

E
[
Γb,b
j1,j2,i1

Γb,b
j3,j4,i2

]
I{j1 ̸= j2}I{j3 ̸= j4}

= n−1n−4φ2−4
0

∑
(i1,i2,j1,j2,j3,j4)∈E

E
[
Γb,b
j1,j2,i1

Γb,b
j3,j4,i2

]
,

where E = {(i1, i2, j1, j2, j3, j4) ∈ [n]6 : i1 ∈ Ik1 , i2 ∈ Ik2 ; j1, j2 /∈ Ik1 ; j3, j4 /∈ Ik1 ; j1 ̸=
j2; j3 ̸= j4; k1, k2 ∈ [K]}. Let E6 ⊆ [n]6 be the subset of indices with distinct entries.

Let E5 ⊆ [n]6 be the subset of indices with exactly five distinct entries, meaning that

two entries are identical while the remaining entries are distinct. Let E4 ⊆ [n]6 be the

subset of indices with exactly four distinct entries. Let E≤3 ⊂ [n]6 be the subset of

indices with at most three distinct entries. Note that [n]6 = E≤3 ∪ E4 ∪ E5 ∪ E6.

Note that for all (i1, i2, j1, j2, j3, j4) ∈ E6, it follows E
[
Γb,b
j1,j2,i1

Γb,b
j3,j4,i2

]
= 0 since

Γb,b
j1,j2,i1

and Γb,b
j3,j4,i2

are independent zero mean random variables.

Now, take (i1, i2, j1, j2, j3, j4) ∈ E ∩ E5. There are three possible cases:

• Case 1: js = jr for some s ∈ {1, 2} and r ∈ {3, 4}. Since all the sub-cases are
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similar, without loss of generality, take (s, r) = (1, 3). It follows that

n−2φ2

0

∣∣∣E [Γb,b
j1,j2,i1

Γb,b
j3,j4,i2

]∣∣∣ (1)≤ ∣∣∣E [(n−φ2

0 bn0,j1,i1)
⊤Hi1 b̃n0,i1(n

−φ2

0 bn0,j1,i1)
⊤Hi2 b̃n0,i2

]∣∣∣
+ n−2φ2

0

∣∣∣E [b̃⊤n0,i1
Hi1 b̃n0,i1

]
E
[
b̃⊤n0,i2

Hi2 b̃n0,i2

]∣∣∣
(2)

≤ C̃E
[
|(n−φ2

0 bn0,j1,i1)|2|b̃n0,i1 |2
]
+ n−2φ2

0 C̃M1

(3)

≤ C̃E
[
E
[
|(n−φ2

0 bn0,j1,i1)|2 | Xi1

]2]1/2
E
[
|b̃n0,i1|4

]1/2
+ n−2φ2

0 C̃M1

(4)

≤ C̃n1−2φ1

0 τn0M
1/2
1 + n−2φ2

0 C̃M1

where (1) holds by triangular inequality, LIE and definition of Γb,b
j1,j2,i1

and

Γb,b
j3,j4,i2

when j1 = j3 and (i1, i2, j1, j2, j3, j4) ∈ E ∩ E5, (2) holds by part (e)

of Assumption 3.1 with C̃ as a function of (C0, C2,M, p) and part (b.3) of As-

sumption 3.2 with C-S, (3) holds by LIE and C-S, and (4) holds by parts (b.1)

and (b.3) of Assumption 3.2.

• Case 2: js = i2 for some s ∈ {1, 2} or jr = i1 for some r ∈ {3, 4}. Since all the

sub-cases are similar, take s = 1. It follows that

n−φ2

0

∣∣∣E [Γb,b
j1,j2,i1

Γb,b
j3,j4,j1

]∣∣∣ (1)≤ ∣∣∣E [(n−φ2

0 bn0,j1,i1)
⊤Hi1 b̃n0,i1 b̃

⊤
n0,j1

Hj1 b̃n0,j1

]∣∣∣
+ n−φ2

0

∣∣∣E [b̃⊤n0,i1
Hi1 b̃n0,i1

]
E
[
b̃⊤n0,j1

Hj1 b̃n0,j1

]∣∣∣
(2)

≤ C̃E
[
|n−φ2

0 bn0,j1,i1|4
]1/4

E
[
|b̃n0,j1|4

]3/4
+ n−φ2

0 C̃M1

(3)

≤ C̃n
3(1−2φ1)/4
0 τ 1/4n0

M
3/4
1 + n−φ2

0 C̃M1

where (1) holds by triangular inequality, LIE, and definition of Γb,b
j1,j2,i1

and

Γb,b
j3,j4,i2

when j1 = i2 and (i1, i2, j1, j2, j3, j4) ∈ E ∩ E5; (2) holds by part (e) of

Assumption 3.1 with C̃ as a function of (C0, C2,M, p), C-S, and part (b.3) of

Assumption 3.2 with C-S; (3) holds by parts (b.3) and (b.4) of Assumption 3.2.

• Case 3: i1 = i2. It follows that∣∣∣E [Γb,b
j1,j2,i1

Γb,b
j3,j4,j1

]∣∣∣ (1)≤ ∣∣∣E [b̃⊤n0,i1
Hi1 b̃n0,i1 b̃

⊤
n0,i1

Hi1 b̃n0,i1

]∣∣∣
+
∣∣∣E [b̃⊤n0,i1

Hi1 b̃n0,i1

]
E
[
b̃⊤n0,i1

Hi1 b̃n0,i1

]∣∣∣
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(2)

≤ 2C̃M1

where (1) holds by triangular inequality, LIE, and definition of Γb,b
j1,j2,i1

and

Γb,b
j3,j4,i2

when i1 = i2 and (i1, i2, j1, j2, j3, j4) ∈ E ∩ E5; and (2) holds by part (e)

of Assumption 3.1 with C̃ as a function of (C0, C2,M, p), C-S, and part (b.3) of

Assumption 3.2 with C-S.

Therefore, for the indices on E ∩ E5, it follows that

n−1n−4φ2−4
0

∑
(i1,i2,j1,j2,j3,j4)∈E∩E5

E
[
Γb,b
j1,j2,i1

Γb,b
j3,j4,i2

]
(1)
= o(n1−2φ1−2φ2) + o(n3/4−3φ1/2−3φ2) +O(n−4φ2)

(2)
= o(n−ζ) (E.21)

where (1) holds since the number of elements of E ∩ E5 is lower than 56n5 and the

preliminary findings in cases 1, 2, and 3, and (2) holds since 2φ1 + 2φ2 − 1 > φ1 +

φ2 − 1/2 ≥ ζ, 3φ1/2 + 3φ2 − 3/4 > φ1 + φ2 − 1/2 ≥ ζ, and 4φ2 > 4φ1 − 1 ≥ ζ.

Now, take (i1, i2, j1, j2, j3, j4) ∈ E ∩ E4. There are three cases.

• Case 1: j1 = js and j2 = jr for {r, s} = {3, 4}. Without loss of generality,

consider (s, r) = (3, 4). It follows

n−4φ2

0

∣∣∣E [Γb,b
j1,j2,i1

Γb,b
j1,j2,i2

]∣∣∣
(1)

≤
∣∣E [(n−φ2

0 bn0,j1,i1)
⊤Hi1(n

−φ2

0 bn0,j2,i1)(n
−φ2

0 bn0,j1,i2)
⊤Hi2(n

−φ2

0 bn0,j2,i2)
]∣∣

+ n−4φ2

0

∣∣∣E [b̃⊤n0,i1
Hi1 b̃n0,i1

]
E
[
b̃⊤n0,i2

Hi2 b̃n0,i2

]∣∣∣
(2)

≤ C̃E
[
|n−φ2

0 bn0,j1,i1)||n
−φ2

0 bn0,j2,i1||n
−φ2

0 bn0,j1,i2||n
−φ2

0 bn0,j2,i2|
]
+ n−4φ2

0 C̃M1

(3)
= C̃E

[
E
[
|n−φ2

0 bn0,j1,i1)||n
−φ2

0 bn0,j1,i2 | | Xi1 , Xi2

]
E
[
|n−φ2

0 bn0,j2,i1 ||n
−φ2

0 bn0,j2,i2| | Xi1 , Xi2

]]
+ n−4φ2

0 C̃M1

(4)

≤ C̃E
[
E
[
|n−φ2

0 bn0,j1,i1)|2 | Xi1

]
E
[
|n−φ2

0 bn0,j2,i2|2 | Xi2

]]
+ n−4φ2

0 C̃M1

(5)

≤ C̃E
[
E
[
|n−φ2

0 bn0,j1,i1)|2 | Xi1

]2]1/2
E
[
E
[
|n−φ2

0 bn0,j2,i2|2 | Xi2

]2]1/2
+ n−4φ2

0 C̃M1

(6)

≤ C̃n
2(1−2φ1)
0 τn0 + n−4φ2

0 C̃M1
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where (1) holds by triangular inequality, LIE, and definition of Γb,b
j1,j2,i1

and

Γb,b
j3,j4,i2

when j1 = j3, j2 = j4 and (i1, i2, j1, j2, j3, j4) ∈ E ∩ E5; (2) holds by part

(e) of Assumption 3.1 with C̃ as a function of (C0, C2,M, p), C-S, and part (b.3)

of Assumption 3.2 with C-S; (3) holds by LIE; (4) and (5) holds by C-S; and

(6) holds by part (b.1) of Assumption 3.2.

• Case 2: j1 = js for s ∈ {3, 4} and j2 = i2. Without loss of generality, s = 3. It

follows

n−3φ2

0

∣∣∣E [Γb,b
j1,j2,i1

Γb,b
j1,j2,i2

]∣∣∣ (1)≤ ∣∣∣E [(n−φ2

0 bn0,j1,i1)
⊤Hi1(n

−φ2

0 bn0,j2,i1)(n
−φ2

0 bn0,j1,j2)
⊤Hj2 b̃n0,j2)

]∣∣∣
+ n−3φ2

0

∣∣∣E [b̃⊤n0,i1
Hi1 b̃n0,i1

]
E
[
b̃⊤n0,j2

Hj2 b̃n0,j2

]∣∣∣
(3)

≤ C̃n
9(1−2φ1)/4
0 τ 3/4n0

M
1/4
1 + C̃n−3φ2

0 M1

where (1) holds by triangular inequality, LIE, and definition of Γb,b
j1,j2,i1

and

Γb,b
j3,j4,i2

when j1 = j3, j2 = i2 and (i1, i2, j1, j2, j3, j4) ∈ E ∩ E5; and (2) holds by

C-S and parts (b.3) and (b.4) of Assumption 3.2.

• Case 3: j1 = js for s ∈ {3, 4} and i1 = i2. Without loss of generality, consider

s = 3. It follows that

n−2φ2

0

∣∣∣E [Γb,b
j1,j2,i1

Γb,b
j1,j4,i1

]∣∣∣ (1)≤ ∣∣∣E [(n−φ2

0 bn0,j1,i1)
⊤Hi1 b̃n0,i1(n

−φ2

0 bn0,j1,i1)
⊤Hi1 b̃n0,i1

]∣∣∣
+ n−2φ2

0

∣∣∣E [b̃⊤n0,i1
Hi1 b̃n0,i1

]
E
[
b̃⊤n0,i1

Hi1 b̃n0,i1

]∣∣∣
(2)

≤ C̃n1−2φ1

0 τn0M
1/2
1 + n−2φ2

0 C̃M1

where (1) holds by triangular inequality, LIE and definition of Γb,b
j1,j2,i1

and

Γb,b
j3,j4,i2

when j1 = j3 and i1 = i2 and (i1, i2, j1, j2, j3, j4) ∈ E ∩ E4; and (2) holds

by the same derivations presented in Case 1 when (i1, i2, j1, j2, j3, j4) ∈ E ∩ E5;
therefore, it is omitted.

Therefore, for the indices on E ∩ E4, it follows that

n−1n−4φ2−4
0

∑
(i1,i2,j1,j2,j3,j4)∈E∩E4

E
[
Γb,b
j1,j2,i1

Γb,b
j3,j4,i2

]
(1)
= o(n1−4φ1) + o(n5/4−9φ1/2−φ2) +O(n−2φ1−2φ2)

(2)
= o(n−ζ) (E.22)
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where (1) holds since the number of elements of E ∩ E4 is lower than 46n4 and the

preliminary findings in cases 1, 2, and 3; and (2) holds since 4φ1 − 1 ≥ ζ, 9φ1/2 +

φ2 − 5/4 > φ1 + φ2 − 1/2 ≥ ζ, and 2φ1 + 2φ2 > φ1 + φ2 − 1/2 ≥ ζ.

Now, take (i1, i2, j1, j2, j3, j4) ∈ E ∩ E≤3. Similar to the proof of Claim 2.1 but

using (E.20) instead of (E.19), it follows that∣∣∣∣∣∣n−1n−4φ2−4
0

∑
(i1,i2,j1,j2)∈E∩E≤3

E
[
Γb,b
j1,j1,i1

Γb,b
j2,j2,i2

]∣∣∣∣∣∣ = o(n−ζ) (E.23)

Finally, using (E.21), (E.22), and (E.23), it follows that I2 = o(n−ζ). This com-

pletes the proof of Claim 2.2.

Claim 2.3: I3 = o(n−ζ). This result is a consequence of C-S and Claims 2.1 and 2.2.

Claim 3: E[I2l,b] = o(n−ζ). Consider the following notation,

Γl,b
j1,j2,i

= δ⊤n0,j1,i
Hibn0,j2,i

where it holds E[Γl,b
j1,j2,i

] = 0 due to part (a) of Assumption 3.2.

Furthermore,

n−2φ2

0 E
[
|Γl,b

j1,j2,i
|2
]
≤ C̃n

2(1−2φ1)
0 τ 1/2n0

M
1/2
1 , (E.24)

which follows by C-S, part (e) of Assumption 3.1, and parts (b.2) and (b.4) of As-

sumption 3.2, with C̃ function of (C2,M,C0, p).

The previous notation can be used to rewrite E[I2l,b] as follows

= E

n−1/2

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

Γl,b
j1,j2,i

2
= E

n−1/2

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j /∈Ik

Γl,b
j,i + n−1/2

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j1,j2 /∈Ik

Γl,b
j1,j2,i

I{j1 ̸= j2}

2
= I1 + I2 + 2I3
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where

I1 = E

n−1/2

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j /∈Ik

Γl,b
j,j,i

2
I2 = E

n−1/2

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j1,j2 /∈Ik

Γl,b
j1,j2,i

I{j1 ̸= j2}

2
I3 = E

n−1/2

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j /∈Ik

Γl,b
j,j,i

n−1/2

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j1,j2 /∈Ik

Γl,b
j1,j2,i

I{j1 ̸= j2}


In what follows, I show that I1 = o(n−ζ), I2 = o(n−ζ), and I3 = o(n−ζ), which is

sufficient to complete the proof of Claim 2.

Claim 3.1: I1 = o(n−ζ). Consider the following expansion,

I1 = n−1n−2φ1−2φ2−3
0

K∑
k1,k2=1

∑
i1∈Ik1

∑
i1∈Ik1

∑
j1 /∈Ik1

∑
j2 /∈Ik2

E[Γl,b
j1,j1,i1

Γl,b
j2,j2,i2

] .

Now, E[Γl,b
j1,j1,i1

Γl,b
j2,j2,i2

] is calculated under the two possible cases based on the

indices (i1, j1, i2, j2).

• Case 1: (i1, j1) and (i2, j2) have no element in common. Then E[Γl,b
j1,j1,i1

Γl,b
j2,j2,i2

]

is zero since Γl,b
j1,j1,i1

and Γl,b
j2,j2,i2

are independent zero mean random variables.

• Case 2: (i1, j1) and (i2, j2) have at least one element in common. In this case,

there are at most 34n3 possible indices. Moreover, due to (E.24) and C-S, it

follows

|E[Γl,b
j1,j1,i1

Γl,b
j2,j2,i2

]| ≤ C̃n
3(1−2φ1)/2
0 τ 1/2n0

n
(1−2φ1)
0 M

1/2
1 .

Therefore,

|I1| ≤ n−1n−2φ1−3
0 34n3C̃n

2(1−2φ1)
0 τ 1/2n0

M
1/2
1

= o(n1−6φ1) ,
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which is sufficient to conclude that I1 is o(n−ζ) since 6φ1 − 1 > 4φ1 − 1 ≥ ζ. This

completes the proof of Claim 3.1.

Claim 3.2: I2 = o(n−ζ). Consider the following expansion,

I2 = n−1

K∑
k1,k2=1

∑
i1∈Ik1

∑
i2∈Ik2

n−2φ1−2φ2−3
0

∑
j1,j2 /∈Ik1

∑
j3,j4 /∈Ik2

E
[
Γl,b
j1,j2,i1

Γl,b
j3,j4,i2

]
I{j1 ̸= j2}I{j3 ̸= j4}

Now, E
[
Γl,b
j1,j2,i1

Γl,b
j3,j4,i2

]
is calculated under four possible cases based on the indices.

• Case 1: all indices are different. Then , E
[
Γl,b
j1,j2,i1

Γl,b
j3,j4,i2

]
equals zero since

Γl,b
j1,j1,i1

and Γl,b
j2,j2,i2

are independent zero mean random variables.

• Case 2: there are exactly five different indices. Then, consider the four different

sub-cases:

– j1 = j3, then∣∣∣E [Γl,b
j1,j2,i1

Γl,b
j1,j4,i2

]∣∣∣ = ∣∣∣E [δ⊤n0,j1,i1
Hi1 b̃n0,i1δ

⊤
n0,j1,i2

Hi2 b̃n0,i2

]∣∣∣
≤ C̃E

[
|δn0,j1,i1||b̃n0,i1||δn0,j1,i2||b̃n0,i2 |

]
≤ C̃E

[
E
[
|δn0,j1,i1 |2 | Xi1

]
|b̃n0,i1|2

]
= O(1)

which holds by C-S, LIE, and part (b.1) and (b.3) of Assumption 3.2.

Since there are at most 56n5 terms, it follows these terms contributed to

I2 with O(n1−2φ1−2φ2) which is larger than o(n−ζ) since 2φ1 + 2φ1 − 1 >

φ1 + φ2 − 1/2 ≥ ζ.

– j1 = j4, then

E
[
Γl,b
j1,j2,i1

Γl,b
j3,j1,i2

]
= E

[
δ⊤n0,j1,i1

Hi1bn0,j2,i1δ
⊤
n0,j3,i2

Hi2bn0,j1,i2

]
= E[E[δ⊤n0,j1,i1

| Xj1 ,Wi1 ,Wi2 ,Wj2 ,Wj3 ]Hi1bn0,j2,i1δ
⊤
n0,j3,i2

Hi2bn0,j1,i2 ]

= 0 ,

which holds due to part (a) of Assumption 3.2.
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– j1 = i2, then

E
[
Γl,b
j1,j2,i1

Γl,b
j3,j4,j1

]
= E

[
δ⊤n0,j1,i1

Hi1bn0,j2,i1δ
⊤
n0,j3,j1

Hj1bn0,j4,j1

]
= E

[
δ⊤n0,j1,i1

Hi1bn0,j2,i1E
[
δ⊤n0,j3,j1

| Wi1 ,Wj1 ,Wj2 ,Wj4

]
Hj1bn0,j4,j1

]
= 0.

– i1 = i2, then j3 is different than all and the previous argument used for

j1 = i2 applies and implies

E
[
Γl,b
j1,j2,i1

Γl,b
j3,j4,i2

]
= 0

• Case 3: there are exactly four different indices. Then

– if j2 or j4 is different than all, then∣∣∣E [Γl,b
j1,j2,i1

Γl,b
j3,j4,i2

]∣∣∣ = ∣∣∣E [δ⊤n0,j1,i1
Hi1 b̃n0,i1δ

⊤
n0,j3,i2

Hi2 b̃n0,i2

]∣∣∣
= C̃E

[
|δn0,j1,i1||b̃n0,i1||δn0,j3,i2||b̃n0,i2|

]
= O(1)

which holds by C-S, LIE, and parts (b.1) and (b.3) of Assumption 3.2.

Since there are at most 46n4 terms, it follows these terms, in this case,

contributed to I2 with O(n−2φ1−2φ2), which is o(n−ζ) since 2φ1 + 2φ2 >

4φ1 − 1.

– if j1 = j4 and j2 = j3, then

E
[
Γl,b
j1,j2,i1

Γl,b
j2,j1,i2

]
= E

[
δ⊤n0,j1,i1

Hi1bn0,j2,i1δ
⊤
n0,j2,i2

Hi2bn0,j1,i2

]
= E[E[δ⊤n0,j1,i1

| Xj1 ,Wi1 ,Wj2 ,Wi2 ]Hi1bn0,j2,i1δ
⊤
n0,j2,i2

Hi2bn0,j1,i2 ]

= 0 ,

which follows by part (a) of Assumption 3.2.

– if j2 = j3 and i1 = j4, then

E
[
Γl,b
j1,j2,i1

Γl,b
j2,i1,i2

]
= E

[
δ⊤n0,j1,i1

Hi1bn0,j2,i1δ
⊤
n0,j2,i2

Hi2bn0,i1,i2

]
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= E[E[δ⊤n0,j1,i1
| Xj1 ,Wi1 ,Wj2 ,Wi2 ]Hi1bn0,j2,i1δ

⊤
n0,j2,i2

Hi2bn0,i1,i2 ]

= 0 ,

which follows by part (a) of Assumption 3.2.

– if j1 = j3 and j2 = j4, then

n−2φ2

0

∣∣∣E [Γl,b
j1,j2,i1

Γl,b
j1,j2,i2

]∣∣∣ = ∣∣E [δ⊤n0,j1,i1
Hi1bn0,j2,i1δ

⊤
n0,j1,i2

Hi2bn0,j2,i2

]∣∣
≤ C̃E

[
E
[
|δn0,j1,i1|2 | Xi1

]
E
[
|n−φ2

0 bn0,j2,i1|2 | Xi1

]]
≤ C̃E

[
E
[
|δn0,j1,i1|2 | Xi1

]2]1/2
E
[
E
[
|n−φ2

0 bn0,j2,i1|2 | Xi1

]2]1/2
≤ C̃M

1/2
1 n

(1−2φ1)
0 τ 1/2n0

which holds due to C-S, LIE, part (b.1) of Assumption 3.2. Since there are

at most 46n4 terms, it follows these terms contributed to I2 with o(n
1−4φ1),

which is o(n−ζ) since 4φ1 − 1 ≥ ζ.

– j1 = i2 and j2 = j4, then

E
[
Γl,b
j1,j2,i1

Γl,b
j3,j2,j1

]
= E

[
δ⊤n0,j1,i1

Hi1bn0,j2,i1δ
⊤
n0,j3,j1

Hj1bn0,j2,j1

]
= E[δ⊤n0,j1,i1

Hi1bn0,j2,i1E[δ
⊤
n0,j3,j1

| Xj3 ,Wi1 ,Wj2 ,Wj1 ]Hj1bn0,j2,j1 ]

= 0 ,

which holds due to part (a) of Assumption 3.2.

• Case 4: there are exactly three different indices. All the terms in this case

contributed to I2 with o(n−ζ) by a similar argument as Case 2 in the proof of

Claim 3.1.

All the previous cases imply that I2 = o(n−ζ), which completes the proof of Claim

3.2.

Claim 3.3: I3 = o(n−ζ). This result is a consequence of C-S and Claims 3.1 and 3.2.

Part 3: It follows by Cauchy-Schwartz, using part 2 of this proposition and part 1

of Proposition C.2.
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Part 4: It follows by Cauchy-Schwartz, using part 2 of this proposition and part 2

of Proposition C.3.

E.7 Proof of Proposition C.5

Proof. For i ∈ Ik, denote ∆i = ∆b
i +∆l

i, where

∆l
i = n−φ1

0 n
−1/2
0

∑
j /∈Ik

δn0,j,i ,

∆b
i = n−φ2

0 n−1
0

∑
j /∈Ik

bn0,j,i ,

Here, δn0,j,i = δn0(Wj, Xi) and bn0,j,i = bn0(Xj, Xi), and δn0 and bn0 are functions

satisfying Assumption 3.2.

Part 1: Consider the following decomposition

E[T ∗
n T l

n,K ] = E

[(
n−1/2

n∑
i1=1

mi1/J0

)(
n−1/2

n∑
i2=1

(∆i2)
⊤∂ηmi2/J0

)]
(1)
= n−1

n∑
i1=1

n∑
i2=1

E
[
(mi1/J0)

(
(∆l

i2
+∆b

i2
)⊤∂ηmi2/J0

)]
= n−1

n∑
i1=1

K∑
k=1

∑
i2∈Ik

E
[
(mi1/J0)

(
(∆l

i2
)⊤∂ηmi2/J0

)]
+ E

[
(mi1/J0)

(
(∆b

i2
)⊤∂ηmi2/J0

)]
= I1 + I2 ,

where (1) holds since ∆i = ∆l
i +∆b

i . Claim 1.1 below shows that I1 = 0, while Claim

1.2 shows I2 = (Gl
b/2)n

−φ2

0 + o(n−φ2).

Claim 1: I1 = 0. To see this, consider the following derivations

I1 = n−1

n∑
i1=1

K∑
k=1

∑
i2∈Ik

E
[
(mi1/J0)

(
(∆l

i2
)⊤∂ηmi2/J0

)]
(1)
= n−1

n∑
i1=1

K∑
k=1

∑
i2∈Ik

n−φ1

0 n
−1/2
0

∑
j /∈Ik

E
[
(mi1/J0) δ

⊤
n,j,i2

∂ηmi2/J0
]

39



(2)
= n−1

n∑
i1=1

K∑
k=1

∑
i2∈Ik

n−φ1

0 n
−1/2
0

∑
j /∈Ik

E
[
(mi1/J0)E

[
δ⊤n,j,i2 | Wi1 ,Wi2

]
∂ηmi2/J0

]
(3)
= n−1

K∑
k=1

∑
i2∈Ik

n−φ1

0 n
−1/2
0

∑
j /∈Ik

E
[
(mj/J0) δ

⊤
n,j,i2

E [∂ηmi2/J0 | Xi2 ,Wj]
]

(4)
= 0

where (1) holds by definition of ∆l
i, (2) holds by the law of iterative expectations, (3)

holds since E
[
δ⊤n,j,i2 | Wi1 ,Wi2

]
= 0 when i1 ̸= j due to part (a) of Assumption 3.2

and by the law of iterative expectations, and (4) holds by the Neyman orthogonality

condition implied by part (b) of Assumption 3.1.

Claim 2: I2 = (Gl
b/2)n

−φ2

0 + o(n−φ2). To see this, consider the following derivations

I2 = n−1

n∑
i1=1

K∑
k=1

∑
i2∈Ik

E
[
(mi1/J0)

(
(∆b

i2
)⊤∂ηmi2/J0

)]
(1)
= n−1

n∑
i1=1

K∑
k=1

∑
i2∈Ik

n−φ2

0 n−1
0

∑
j /∈Ik

E
[
(mi1/J0) b

⊤
n0,j,i2

∂ηmi2/J0
]

(2)
= n−1

n∑
i1=1

K∑
k=1

∑
i2∈Ik

n−φ2

0 n−1
0

∑
j /∈Ik

E
[
(mi1/J0) b

⊤
n0,j,i2

E [∂ηmi2/J0 | Xi2 ,Wi1 , Xj]
]

(3)
= n−1

K∑
k=1

∑
i2∈Ik

n−φ2

0 n−1
0

∑
j /∈Ik

E
[
(mi2/J0)E

[
b⊤n0,j,i2

| Wi2

]
∂ηmi2/J0

]
(4)
= n−φ2

0 E
[
(mi2/J0) b̃n0(Xi2)∂ηmi2/J0

]
(4)
= n−φ2

0 (Gl
b/2) + o(n−φ2

0 ) ,

where (1) holds by definition of ∆b
i , (2) holds by the law of iterative expectations,

(3) holds since E [∂ηmi2/J0 | Xi2 ,Wi1 , Xj] = 0 when i1 ̸= i2 due to the Neyman

orthogonality condition implied by part (b) of Assumption 3.1 and the law of itera-

tive expectations, (4) holds by definitions of b̃n0,i = E[bn0,j,i | Xi] which is equal to

E [bn0,j,i | Wi], and (5) holds by definition of Gl
b in (A-7) and Assumption A.1.
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Part 2: Consider the following decomposition,

E[T ∗
n T nl

n,K ] = E

[(
n−1/2

n∑
i1=1

mi1/J0

)(
n−1/2

n∑
i2=1

(∆i2)
⊤Hi2(∆i2)

)]
= I1 + 2I2 + I3

where

I1 = E

[(
n−1/2

n∑
i1=1

mi1/J0

)(
n−1/2

n∑
i2=1

(∆l
i2
)⊤Hi2(∆

l
i2
)

)]

I2 = E

[(
n−1/2

n∑
i1=1

mi1/J0

)(
n−1/2

n∑
i2=1

(∆l
i2
)⊤Hi2(∆

b
i2
)

)]

I3 = E

[(
n−1/2

n∑
i1=1

mi1/J0

)(
n−1/2

n∑
i2=1

(∆b
i2
)⊤Hi2(∆

b
i2
)

)]

In what follows, I show that I1 = o(n−ζ), I2 = (Gb/2)n
1/2−φ1−φ2

0 + o(n−ζ), and

I3 = o(n−ζ).

Claim 1: I1 = o(n−ζ). Consider the following derivations,

I1
(1)
= n−1

n∑
i1=1

K∑
k=1

∑
i2∈Ik

n−2φ1

0 n−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E
[
(mi1/J0)

(
(δn,j1,i2)

⊤Hi2(δn,j2,i2)
)]

(2)
= n−1

K∑
k=1

∑
i∈Ik

n−2φ1

0 n−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E
[
(mi/J0) (δn,j1,i)

⊤Hi(δn,j2,i)
]

+ n−1

K∑
k=1

∑
i∈Ik

n−2φ1

0 n−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E
[
(mj1/J0) (δn,j1,i)

⊤Hi(δn,j2,i)
]

+ n−1

K∑
k=1

∑
i∈Ik

n−2φ1

0 n−1
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E
[
(mj2/J0) (δn,j1,i)

⊤Hi(δn,j2,i)
]

(3)
= n−1

K∑
k=1

∑
i∈Ik

n−2φ1

0 n−1
0

∑
j /∈Ik

E
[
(mi/J0) (δn,j,i)

⊤Hi(δn,j,i)
]

+ 2n−1

K∑
k=1

∑
i∈Ik

n−2φ1

0 n−1
0

∑
j /∈Ik

E
[
(mj/J0) (δn,j,i)

⊤Hi(δn,j,i)
]
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= n−2φ1

0 E
[
(mi/J0) (δn,j,i)

⊤Hi(δn,j,i)
]
+ 2n−2φ1

0 E
[
(mj/J0) (δn,j,i)

⊤Hi(δn,j,i)
]

(4)
= O(n−2φ1)

where (1) holds by definition of ∆l
i, (2) holds since i1 /∈ {i2, j1, j2} implies

E
[
(mi1/J0)

(
(δn,j1,i2)

⊤Hi2(δn,j2,i2)
)]

= 0 ,

which follows since mi1 is a zero mean random variable independent of Wi2 , Wj1 and

Wj2 , (3) holds since j1 ̸= j2 implies

E
[
(mi/J0) (δn,j1,i)

⊤Hi(δn,j2,i)
]
= 0

E
[
(mj1/J0) (δn,j1,i)

⊤Hi(δn,j2,i)
]
= 0

E
[
(mj2/J0) (δn,j1,i)

⊤Hi(δn,j2,i)
]
= 0 ,

which follows by the law of iterative expectations and noting E[δn,j2,i | Wi,Wj1 ] = 0

and E[δn,j1,i | Wi,Wj2 ] = 0 (due to part (a) of Assumption 3.2), and (4) holds by

Holder’s inequality, part (e) of Assumption 3.1, and part (a) of Assumption 3.2.

Claim 2: I2 = (Gb/2)n
1/2−φ1−φ2

0 + o(n−ζ). Consider the following derivations,

I2
(1)
= n−1

n∑
i1=1

K∑
k=1

∑
i2∈Ik

n−φ1−φ2

0 n
−3/2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E
[
(mi1/J0)

(
(δn,j1,i2)

⊤Hi2(bn0,j2,i2)
)]

(2)
= n−1

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j1,j2 /∈Ik

E
[
(mi/J0) (δn,j1,i)

⊤Hi(bn0,j2,i)
]

+ n−1

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j1,j2 /∈Ik

E
[
(mj1/J0) (δn,j1,i)

⊤Hi(bn0,j2,i)
]
I{j1 ̸= j2}

+ n−1

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j1,j2 /∈Ik

E
[
(mj2/J0) (δn,j1,i)

⊤Hi(bn0,j2,i)
]
I{j1 ̸= j2}

+ n−1

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j /∈Ik

E
[
(mj/J0) (δn,j,i)

⊤Hi(bn0,j,i)
]

(3)
= n−1

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j /∈Ik

E
[
(mi/J0) (δn,j,i)

⊤Hi(bn0,j,i)
]
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+ n−1

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j1,j2 /∈Ik

E
[
(mj1/J0) (δn,j1,i)

⊤Hi(b̃n0,i)
]
I{j1 ̸= j2}

+ n−1

K∑
k=1

∑
i∈Ik

n
−φ1−φ2−3/2
0

∑
j /∈Ik

E
[
(mj/J0) (δn,j,i)

⊤Hi(bn0,j,i)
]

(4)
= n

−φ1−φ2+1/2
0 E

[
(mj1/J0) (δn,j1,i)

⊤Hi(b̃n0,i)
]

− n
−φ1−φ2−1/2
0 E

[
(mj1/J0) (δn,j1,i)

⊤Hi(b̃n0,i)
]

+ n
−φ1−1/2
0 E

[
(mj/J0) (δn,j,i)

⊤Hi(n
−φ2

0 bn0,j,i)
]

(5)
= (Gb/2)n

1/2−φ1−φ2

0 + o(n−ζ) ,

where (1) holds by definition of ∆l
1,i and ∆b

1,i, (2) holds since i1 /∈ {i2, j1, j2} implies

E
[
(mi1/J0)

(
(δn,j1,i2)

⊤Hi2(bn0,j2,i2)
)]

by using that mi1 is zero mean and independent of Wi2 , Wj1 , and Wj2 , (3) holds

by definition of b̃n0,i = E[bn0,j,i | Xi], and since j1 ̸= j2 and the law of iterative

expectations implies

(mℓ/J0)E
[
(δn,j1,i)

⊤ | Wi,Wj2

]
Hi2(bn0,j2,i) = 0

for ℓ = i, j2 by using part (a) of Assumption 3.2, (4) holds by the law of the iterative

expectations,

(mi/J0)E
[
(δn,j,i)

⊤ | Wi, Xj

]
Hi(bn0,j,i) = 0 ,

and by parts (a) of Assumption 3.2, and (5) holds by definition of Gb in (A-6) and

Assumption A.1 and because

n
−φ1−1/2
0 E

[
(mj/J0) (δn,j,i)

⊤Hi(n
−φ2

0 bn0,j,i)
]

≤ Cn
−φ1−1/2
0 E[|mj/J0|2]1/2E[||δn,j,i||4]1/4E[||n−φ2

0 bn0,j,i||4]

= O(n−φ1−1/2)×O(1)×O(n
1/4−φ1/2
0 )× o(n

3/4−3φ1/2
0 )

= o(n1/2−3φ1)

where the inequality uses part (d) of Assumption 3.1 and Cauchy-Schwartz inequality,

and the equalities follows by part (b) of Assumption 3.2. The proof of the claim is
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completed since ζ < 1/2− 3φ1 whenever φ1 < 1/2.

Claim 3: I3 = o(n−ζ). Consider the following derivations,

I4
(1)
= n−1

n∑
i1=1

K∑
k=1

∑
i2∈Ik

n−2φ2

0 n−2
0

∑
j1 /∈Ik

∑
j2 /∈Ik

E
[
(mi1/J0)

(
(bn0,j1,i2)

⊤Hi2(bn0,j2,i2)
)]

(2)
= n−1

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j1,j2 /∈Ik

E
[
(mi/J0) (bn0,j1,i)

⊤Hi(bn0,j2,i)
]

+ n−1

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j1,j2 /∈Ik

E
[
(mj1/J0) (bn0,j1,i)

⊤Hi(bn0,j2,i)
]
I{j1 ̸= j2}

+ n−1

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j1,j2 /∈Ik

E
[
(mj2/J0) (bn0,j1,i)

⊤Hi(bn0,j2,i)
]
I{j1 ̸= j2}

+ n−1

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j /∈Ik

E
[
(mj/J0) (bn0,j,i)

⊤Hi(bn0,j,i)
]

(3)
= n−1

K∑
k=1

∑
i∈Ik

n−2φ2−2
0

∑
j1,j2 /∈Ik

E
[
(mi/J0) (b̃n0,i)

⊤Hi(b̃n0,i)
]
I{j1 ̸= j2}

+ n−1

K∑
k=1

∑
i∈Ik

n−2
0

∑
j /∈Ik

E
[
(mi/J0) (n

−φ2

0 bn0,j,i)
⊤Hi(n

−φ2

0 bn0,j,i)
]

+ n−1

K∑
k=1

∑
i∈Ik

n−φ2−2
0

∑
j1,j2 /∈Ik

E
[
(mj1/J0) (n

−φ2

0 bn0,j1,i)
⊤Hi(b̃n0,i)

]
I{j1 ̸= j2}

+ n−1

K∑
k=1

∑
i∈Ik

n−φ2−2
0

∑
j1,j2 /∈Ik

E
[
(mj2/J0) (b̃n0,i)

⊤Hi(n
−φ2

0 bn0,j2,i)
]
I{j1 ̸= j2}

+ n−1

K∑
k=1

∑
i∈Ik

n−2
0

∑
j /∈Ik

E
[
(mj/J0) (n

−φ2

0 bn0,j,i)
⊤Hi(n

−φ2

0 bn0,j,i)
]

(4)
= O(n−2φ2) + o(n1/2−3φ1) + o(n1/2−φ1−φ2) + o(n1/2−3φ1)

(5)
= o(n−ζ) ,

where (1) holds by definition of ∆b
1,i, (2) holds since i1 /∈ {j1, j2, i2} implies

E
[
(mi1/J0)

(
(bn,j1,i2)

⊤(∂2ηmi2/(2J0))(bn,j2,i2)
)]

= 0
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by using thatmi1 is zero mean and independent ofWi2 ,Wj1 , andWj2 ; (3) holds by the

law of iterative expectations; (4) holds by parts (b) and (c) of Assumption 3.2, parts

(c) and (e) of Assumption 3.1, part (b.1) of Assumption 3.2, and Holder’s inequality;

and (5) holds since ζ < 1/2− 3φ1 and ζ < 2φ2 (because φ1 < 1/2 and φ1 ≤ φ2).

E.8 Proof of Lemma C.1

Proof. It is sufficient to show the result for the case when δn0 and bn0 are real-

valued functions since for any x = (x1, . . . , xp) ∈ Rp it holds ||x||4 = (
∑p

ℓ=1 x
2
ℓ)

2 ≤
p
∑p

ℓ=1 |xℓ|4. In the proof, I use that E[(
∑

ℓ/∈Ik Zℓ)
4] ≤ n0E[Z

4
ℓ ] + 3n2

0E[Z
2
ℓ ]

2, which

holds for zero mean i.i.d. random variables Zℓ.

Part 1: Fix i ∈ Ik and denote Zℓ = δn0(Wℓ, Xi) for any ℓ /∈ Ik. Conditional on Xi,

it holds that {Zℓ : ℓ /∈ Ik} is a zero mean i.i.d. sequence of random variables due to

part (a) of Assumption 3.2. Therefore,

E

|n−1/2
0

∑
ℓ/∈Ik

n−φ1

0 Zℓ|4 | Xi

 ≤ n−2−4φ1

0

(
n0E[Z

4
ℓ | Xi] + 3n2

0E[Z
2
ℓ | Xi]

2
)

Using the previous inequality and the law of iterative expectations, it follows

E

|n−1/2
0

∑
ℓ/∈Ik

n−φ1

0 Zℓ|4
 ≤ n−4φ1

0

(
n−1
0 E[Z4

ℓ ] + 3E[E[Z2
ℓ | Xi]

2]
)

(1)

≤ n−4φ1

0

(
n−2φ1

0 M1 + 3M1

)
,

where (1) holds by parts (b.1) and (b.2) of Assumption 3.2, and the definition of Zℓ.

Taking C ≥ 4M1 completes the proof of part 1.

Part 2: Fix i ∈ Ik and denote Zℓ = n−φ2

0 (bn0(Xℓ, Xi)− b̃n0(Xi)) for any ℓ /∈ Ik, where

b̃n0(Xi) = E[bn0(Xℓ, Xi) | Xi]. As in part 1, {Zℓ : ℓ /∈ I} conditional on Xi are zero

mean i.i.d. random variables. Therefore,

E

|n−1
0

∑
ℓ/∈Ik

(Zℓ + n−φ2

0 b̃n0(Xi))|4
 (1)

≤ 23E

|n−1
0

∑
ℓ/∈Ik

Zℓ|4
+ 23E

|n−1
0

∑
ℓ/∈Ik

n−φ2

0 b̃n0(Xi)|4

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(2)

≤ 8n−2
0

(
n−1
0 E[Z4

ℓ ] + 3E[E[Z2
ℓ | Xi]

2]
)
+ 8n−4φ2

0 E[|b̃n0(Xi)|4]
(3)

≤ 8n−6φ1

0 τn0 + 24n−4φ1

0 τn0 + 8n−4φ2

0 M1

where (1) holds by Loeve’s inequality (Davidson (1994, Theorem 9.28)), (2) holds

by the same arguments as in part 1, and (3) holds by part (b.1), (b.3) and (b.4) of

Assumption 3.2. Taking C ≥ 32 + 8M1 completes the proof of part 2.

E.9 Proof of Lemma C.2

Proof. For i ∈ Ik, denote ∆i = ∆b
i +∆l

i, where

∆l
i = n−φ1

0 n
−1/2
0

∑
j /∈Ik

δn0,j,i ,

∆b
i = n−φ2

0 n−1
0

∑
j /∈Ik

bn0,j,i ,

Here, δn0,j,i = δn0(Wj, Xi) and bn0,j,i = bn0(Xj, Xi), and δn0 and bn0 are functions

satisfying Assumption 3.2. In what follows, the results are proved for any given

sequence K that diverges to infinity as n diverges to infinity, which is sufficient to

guarantee the results of this lemma.

Part 1: Using Assumption 3.2, it follows

n−1

n∑
i=1

(η̂i − ηi)
⊤ ∂ηψ

z
i = I1 + I2 + I3 ,

where

I1 = n−1

n∑
i=1

(∆l
i)
⊤∂ηψ

z
i

I2 = n−1

n∑
i=1

(∆b
i)

⊤∂ηψ
z
i

I3 = n−1n
−2min{φ1,φ2}
0

n∑
i=1

R̂1(Xi)
⊤∂ηψ

z
i

and n0 = ((K − 1)/K)n.
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Claim 1: I1 = Op(n
−1/2−min{φ1,φ2}). I first show that E[I1] = 0 (claim 1.1). I then

show that E[I21 ] = O(n−1−2min{φ1,φ2}) (claim 1.2), which is sufficient to conclude the

claim.

Claim 1.1: E[I1] = 0. Consider the following derivations,

E[I1] = n−1

n∑
i=1

E[(∆l
i)
⊤∂ηψ

z
i ]

= n−1

K∑
k=1

∑
i∈Ik

E
[
E
[
(∆l

i)
⊤∂ηψ

z
i | Xi, (Wj : j /∈ Ik)

]]
(1)
= n−1

K∑
k=1

∑
i∈Ik

E
[
(∆l

i)
⊤E [∂ηψ

z
i | Xi, (Wj : j /∈ Ik)]

]
(2)
= 0 ,

where (1) holds since ∆l
i = ∆l

1(Xi) is a function of Xi and the data (Wj : j /∈ Ik)

used to estimate η̂k(·), and (2) holds by part (b) in Assumption 3.1.

Claim 1.2: E[I21 ] = O(n−1−2min{φ1,φ2}). Recall that I use the following notation

δn0,j,i = δn0(Wj, Xi) and ∆l
i = ∆l

1(Xi) = n−φ1

0 n
−1/2
0

∑
j /∈Ik δn0,j,i for i ∈ Ik. To show

E[I21 ] = O(n−1−2min{φ1,φ2}), consider the following derivations,

E[I21 ]
(1)
= n−2

n∑
i1,i2=1

E
[
(∆l

i1
)⊤∂ηψ

z
i1
(∆l

i2
)⊤∂ηψ

z
i2

]
(2)

≤ n−2φ1

0 n−2

n∑
i=1

E
[
((∆l

i)
⊤∂ηψ

z
i )

2
]
+ n−2φ1

0 n−2

n∑
i1 ̸=i2

∣∣E [(∆l
i1
)⊤∂ηψ

z
i1
(∆l

i2
)⊤∂ηψ

z
i2

]∣∣
(3)

≤ n−2φ1−1
0 E

[(
δ⊤n0,j,i

∂ηψ
z
i

)2]
+

(n− 1)n−1

n1+2φ1

0

∣∣E [δ⊤n0,i2,i1
∂ηψ

z
i1
δ⊤n0,i1,i2

∂ηψ
z
i2

]∣∣
(4)

≤ n−2φ1−1
0 E

[(
δ⊤n0,j,i

∂ηψ
z
i

)2]
+ (n− 1)n−1n

−(1+2φ1)
0 E

[(
δ⊤n0,i2,i1

∂ηψ
z
i1

)2]1/2
E
[(
δ⊤n0,i1,i2

∂ηψ
z
i2

)2]1/2
= n−2φ1−1

0 E
[(
δ⊤n0,j,i

∂ηψ
z
i

)2]
+ (n− 1)n−1n

−(1+2φ1)
0 E

[(
δ⊤n0,j,i

∂ηψ
z
i

)2]
(5)

≤ n−2φ1−1
0 M

1/2
1 C1 × p

(
1 + (n− 1)n−1

)
,

where (1) holds by definition of I1, (2) holds by triangular inequality, (3) holds by
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(E.25) and (E.26) presented below, (4) holds by Cauchy-Schwartz inequality, and (5)

holds by the derivations presented next,

E
[(
δ⊤n0,j,i

∂ηψ
z
i

)2]
= E

[
δ⊤n0,j,i

E
[(
∂ηψ

z
i (∂ηψ

z
i )

⊤) | Xi,Wj

]
δn0,j,i

]
(1)
= E

[
δ⊤n0,j,i

E
[(
∂ηψ

z
i (∂ηψ

z
i )

⊤) | Xi

]
δn0,j,i

]
(2)

≤ E
[
||δn0,j,i||2

]
C1 × p

(3)

≤ M
1/2
1 C1 × p

where (1) holds since i ̸= j, (2) holds by part (d) of Assumption 3.1 and Loeve’s

inequality (Davidson (1994, Theorem 9.28)), and (3) holds by Jensen’s inequality

(e.g., E [||δ(Wj, Xi)||2]1/2 ≤ E [||δ(Wj, Xi)||4]1/4) and part (b) of Assumption 3.2.

Note these derivations complete the proof of claim 1.2.

The previous derivations used the following claims:

E
[
((∆l

i)
⊤∂ηψ

z
i )

2
]
= n−1

0

∑
j /∈Ik

E
[
δ(Wj, Xi)

⊤∂ηψ
z
i δ(Wj, Xi)

⊤∂ηψ
z
i

]
(E.25)

E
[
(∆l

i1
)⊤∂ηψ

z
i1
(∆l

i2
)⊤∂ηψ

z
i2

]
= n−1

0 E
[
δ⊤n0,i2,i1

∂ηψ
z
i1
δ⊤n0,i1,i2

∂ηψ
z
i2

]
I{k1 ̸= k2} (E.26)

To show (E.25), consider the following derivations.

E
[
(∆l

i)
⊤∂ηψ

z
i (∆

l
i)
⊤∂ηψ

z
i

]
= n−1

0

∑
j1 /∈Ik

∑
j2 /∈Ik

E
[
δ⊤n0,j1,i

∂ηψ
z
i δ

⊤
n0,j2,i

∂ηψ
z
i

]
(1)
= n−1

0

∑
j /∈Ik

E
[
δ(Wj, Xi)

⊤∂ηψ
z
i δ(Wj, Xi)

⊤∂ηψ
z
i

]
where (1) holds due to the following: if j1 ̸= j2, then

E
[
δ⊤n0,j1,i

∂ηψ
z
i δ

⊤
n0,j1,i

∂ηψ
z
i

]
= E

[
E
[
δ⊤n0,j1,i

| Wi,Wj2

]
∂ηψ

z
i δ

⊤
n0,j2,i

∂ηψ
z
i

]
= E

[
E
[
δ⊤n0,j1,i

| Xi

]
∂ηψ

z
i δ

⊤
n0,j2,i

∂ηψ
z
i

]
(1)
= 0 ,

where (1) holds by definition of δn0 in part (a) of Assumption 3.2.
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To show (E.26), consider i1 ̸= i2 where i1 ∈ Ik1 and i2 ∈ Ik2 , therefore

E
[
(∆l

i1
)⊤∂ηψ

z
i1
(∆l

i2
)⊤∂ηψ

z
i2

]
= n−1

0

∑
j1 /∈Ik1

∑
j2 /∈Ik2

E
[
δ⊤n0,j1,i1

∂ηψ
z
i1
δ⊤n0,j2,i2

∂ηψ
z
i2

]
(1)
= n−1

0 E
[
δ⊤n0,i2,i1

∂ηψ
z
i1
δ⊤n0,i1,i2

∂ηψ
z
i2

]
I{k1 ̸= k2}

where (1) holds since k1 = k2 implies j2 ̸= i1 and j1 ̸= i2, and because the conditions

j2 ̸= i1 or j1 ̸= i2 imply that E
[
δ⊤n0,j1,i1

∂ηψ
z
i1
δ⊤n0,j2,i2

∂ηψ
z
i2

]
is zero. To see this, suppose

j2 ̸= i1 and consider the following derivations,

E
[
δ⊤n0,j1,i1

∂ηψ
z
i1
δ⊤n0,j2,i2

∂ηψ
z
i2

]
= E

[
E
[
δ⊤n0,j1,i1

∂ηψ
z
i1
δ⊤n0,j2,i2

∂ηψ
z
i2
| Xi1 ,Wi2 ,Wj1 ,Wj2

]]
= E

[
δ⊤n0,j1,i1

E
[
∂ηψ

z
i1
| Xi1 ,Wi2 ,Wj1 ,Wj2

]
δ⊤n0,j2,i2

∂ηψ
z
i2

]
(1)
= E

[
δ⊤n0,j1,i1

E
[
∂ηψ

z
i1
| Xi1

]
δ⊤n0,j2,i2

∂ηψ
z
i2

]
(2)
= 0 ,

where (1) holds since i1 /∈ {i2, j1, j2} (since i1 ̸= j2) and (2) holds by part (b) in

Assumption 3.1. Similar derivations conclude the same for j1 ̸= i2.

Claim 2: I2 = O(n−1/2−min{φ1,φ2}). Define X(n) = {Xi : 1 ≤ i ≤ n}. I first show

E[I2 | X(n)] = 0. I then show E[I22 ] ≤ n−1E[||∆b
i ||2]C1p, which is sufficient to

conclude due to Lemma C.1 that implies that E[||∆b
i ||2] is O(n−2min{φ1,φ2}) due to

Cauchy-Schwartz.

The first part holds due to the following derivations,

E[I2 | X(n)] = E

[
n−1

n∑
i=1

(∆b
i)

⊤∂ηψ
z
i | X(n)

]
(1)
= n−1

n∑
i=1

(∆b
i)

⊤E
[
∂ηψ

z
i | X(n)

]
(2)
= n−1

n∑
i=1

(∆b
i)

⊤E [∂ηψ
z
i | Xi]

(3)
= 0 ,

where (1) holds since ∆b
i is function of X(n) and ∆b

i = n−φ2

0 n−1
0

∑
i0 /∈Ik b(Xi0 , Xi) for
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i ∈ Ik due to part (a) of Assumption 3.2, (2) holds since the observations are i.i.d.,

and (3) follows due to part (b) of Assumption 3.1.

To prove that E[I22 ] ≤ n−1E[||∆b
i ||2]C1p, first note that

E[I22 | X(n)] = E

(n−1

n∑
i=1

(∆b
i)

⊤∂ηψ
z
i

)2

| X(n)


(1)
= E

[
n−2

n∑
i=1

(
(∆b

i)
⊤∂ηψ

z
i

)2 | X(n)

]
(2)
= n−2

n∑
i=1

(∆b
i)

⊤E
[
(∂ηψ

z
i )(∂ηψ

z
i )

⊤ | Xi

]
∆b

i

(1)

≤ n−2

n∑
i=1

||∆b
i ||2C1 × p

where (1) holds because E
[(
(∆b

i)
⊤∂ηψ

z
i

) (
(∆b

j)
⊤∂ηψ

z
j

)
| X(n)

]
= 0 when i ̸= j (since

∆b
i and ∆b

j are functions of X
(n), and part (b) of Assumption 3.1), (2) holds since ∆b

i

and ∆b
j are functions of X

(n) and the observations are i.i.d., and (3) holds by part (d)

of Assumption 3.1. Then,

E[E[I22 | X(n)]] ≤ E[n−2

n∑
i=1

||∆b
i ||2C1 × p] = n−1E[||∆b

i ||2]C1p

which completes the proof of this claim.

Claim 3: I3 = Op(n
−2min{φ1,φ2}
0 ). Algebra shows

|I3| = |n−2min{φ1,φ2}
0 n−1

n∑
i=1

R̂1(Xi)
⊤∂ηψ

z
i |

≤ n
−2min{φ1,φ2}
0

(
n−1

n∑
i=1

||R̂1(Xi)||2
)1/2(

n−1

n∑
i=1

||∂ηψz
i ||2
)1/2

(1)
= n

−2min{φ1,φ2}
0 ×Op(1)×

(
n−1

n∑
i=1

||∂ηψz
i ||2
)1/2

,

(2)
= n

−2min{φ1,φ2}
0 ×Op(1)×Op(1) ,
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(3)
= Op(n

−2min{φ1,φ2}
0 ) ,

where (1) holds by part (c) of Assumption 3.2, (2) holds by the law of large numbers,

Jensen’s inequality (e.g., (E[||∂ηψz
i ||2] ≤ E[||∂ηψz

i ||4]1/2), and part (c) of Assumption

3.1, and (3) holds since n/2 ≤ n ≤ n

Part 2: By Taylor approximation and mean-value theorem (since ψz(w, η) is twice

continuously differentiable on η by Assumption 3.1), it follows

ψ̂z
i − ψz

i = (η̂i − ηi)
⊤∂ηψ

z
i +

1

2
(η̂i − ηi)

⊤∂2ηψ̃
z
i (η̂i − ηi)

where ∂2ηψ̃
z
i = ∂2ηψ

z(Wi, η)|η=η̃i for some η̂i (due to mean-value theorem). Using this

n−1

n∑
i=1

(ψ̂z
i − ψz

i ) = n−1

n∑
i=1

(η̂i − ηi)
⊤∂ηψ

z
i +

1

2
n−1

n∑
i=1

(η̂i − ηi)
⊤∂2ηψ̃

z
i (η̂i − ηi)

(1)
= Op(n

−min{φ1,φ2}−1/2) +
1

2
n−1

n∑
i=1

(η̂i − ηi)
⊤∂2ηψ̃

z
i (η̂i − ηi)

(2)
= Op(n

−2min{φ1,φ2}) ,

where (1) holds due to Part 1, and (2) holds due to the derivations presented next,

|n−1

n∑
i=1

(η̂i − ηi)
⊤∂2ηm̃i(η̂i − ηi)| ≤ n−1

n∑
i=1

|(η̂i − ηi)
⊤∂2ηm̃i(η̂i − ηi)|

(1)

≤ n−1

n∑
i=1

||η̂i − ηi||2C2 × p ,

(2)
= Op(n

−2min{φ1,φ2}) ,

where (1) holds due to part (e) of Assumption 3.1 and Loeve’s inequality (Davidson

(1994, Theorem 9.28)), and (2) holds due to part 4 of Lemma C.4.

Part 3: It follows from part 1, by using that ∂ηmi = ∂ηψ
b
i − ∂ηψ

a
i θ0 and |θ0| ≤

M
1/4
1 /C0 (due to parts (a) and (c) of Assumptions 3.1 and the representation of θ0 as

a ratio of expected values in (2.3)).
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Part 4: By Taylor expansion and mean value theorem,

m̂i −mi = (η̂i − ηi)
⊤∂ηmi + (η̂i − ηi)

⊤(∂2ηmi/2)(η̂i − ηi) + r̃i ,

where r̃i is the Lagrange’s remainder error term (since m is three-times continuous

differentiable on η by assumption on ψz). Therefore,

|r̃i| ≤ (1/6)p3/2C3||η̂i − ηi||3 , (E.27)

where the bound follows by part (e) of Assumption 3.1, Jensen’s inequality, and the

definition of Euclidean norm. It follows

n−1/2

n∑
i=1

(m̂i −mi)/J0 = I1 + I2 + I3 ,

where

I1 = n−1/2

n∑
i=1

(η̂i − ηi)
⊤∂ηmi/J0

I2 = n−1/2

n∑
i=1

(η̂i − ηi)
⊤(∂2ηmi/(2J0))(η̂i − ηi)

I3 = n−1/2

n∑
i=1

r̃i/J0

In the claims below I show that I1 = T l
n,K + op(n

−ζ), I2 = T nl
n,K + op(n

−ζ), and I3 =

op(n
−ζ), which is sufficient to complete the proof of part 4. Furthermore, if Assump-

tion 3.3 holds, then Proposition C.5 implies limn→∞ infK≤n V ar[n
2φ1−1T nl

n,K ] > 0; and

if Assumption A.1 holds, then Proposition C.3 implies limn→∞ infK≤n V ar[n
φ1T l

n,K ] >

0.

Claim 1: I1 = T l
n,K +Op(n

−2min{φ1,φ2}). By part (a) of Assumption 3.2, it follows

I1 = I1,1 + I1,2 ,
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where R̂i = R̂(Xi) for i ∈ Ik and

I1,1 = n−1/2

n∑
i=1

(∆i)
⊤∂ηmi/J0

I1,2 = n−1/2

n∑
i=1

(n−2φ1

0 R̂i)
⊤∂ηmi/J0

By definition of T l
n,K in (A-3), it follows that I1,1 = T l

n,K . Since ∂ηmi = ∂ηψ
b
i −θ0∂ηψa

i

and |θ0| ≤ M1/4/C0, it follows that I1,2 is Op(n
−2min{φ1,φ2}) due to proof of Claim 3

in Part 1 of this lemma.

Claim 2: I2 = T nl
n,K +Op(n

1/2−3min{φ1,φ2}). By part (a) of Assumption 3.2, it follows

I2 = I2,1 + 2I2,2 + I2,3

where R̂i = R̂(Xi) for i ∈ Ik and

I2,1 = n−1/2

n∑
i=1

(∆i)
⊤(∂2ηmi/(2J0))(∆i)

I2,2 = n−1/2

n∑
i=1

(∆i)
⊤(∂2ηmi/(2J0))(n

−2φ1

0 R̂i)

I2,3 = n−1/2

n∑
i=1

(n−2φ1

0 R̂i)
⊤(∂2ηmi/(2J0))(n

−2φ1

0 R̂i)

By definition of T nl
n,K in (3.12), it follows that I2,1 = T nl

n,K . In what follows, I prove

claims that imply I2,j = op(n
−ζ) for j = 2, 3 using that ζ < 3φ1− 1/2 since φ1 < 1/2,

which is sufficient to complete the proof of claim 2.

Claim 2.1: I2,2 = Op(n
1/2−3min{φ1,φ2}). To see this, consider the following derivations,

|I2,2|
(1)

≤ n1/2 × pC2

(
n−1

n∑
i=1

||∆i|| × ||n−2min{φ1,φ2}
0 R̂i||

)
(2)

≤ n1/2n
−2min{φ1,φ2}
0 × pC2

(
n−1

n∑
i=1

||∆i||2
)1/2

×

(
n−1

n∑
i=1

||R̂i||2
)1/2
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(3)
= n1/2n

−2min{φ1,φ2}
0 ×Op(n

−min{φ1,φ2})×Op(1)

= Op(n
1/2−3min{φ1,φ2})

where (1) holds by triangle inequality, part (e) of Assumption 3.1, Jensen’s inequality,

and definition of Euclidean norm, (2) holds by Cauchy-Schwartz inequality, (3) holds

by Lemma C.1 and by part (c) of Assumption 3.2 and Markov’s inequality.

Claim 2.2: I2,3 = Op(n
1/2−4min{φ1,φ2}). The proof is similar to Claim 2.1; therefore,

it is omitted.

Claim 3: I3 = Op(n
1/2−3min{φ1,φ2}). Using (E.27), it follows

|I3| ≤ (1/6)p3/2C3/J0n
−1/2

n∑
i=1

||η̂i − ηi||3 .

In what follows, I prove that n−1/2
∑n

i=1 ||η̂i − ηi||3 is Op(n
1/2−3φ1).

By part (a) of Assumption 3.2 and since φ1 ≤ φ2, it follows

η̂i − ηi = ∆i + n
−2min{φ1,φ2}
0 R̂i

where ∆i = ∆l
i+∆b

i and R̂i = R̂(Xi). Using triangle inequality and Loeve’s inequality

(Davidson (1994, Theorem 9.28)) in the previous expression, it follows

||η̂i − ηi||3 ≤ 22
(
||∆i||3 + n

−6min{φ1,φ2}
0 ||R̂i||3

)
which implies

n−1

n∑
i=1

||η̂i − ηi||3 ≤ 22(I3,1 + I3,2)

where

I3,1 = n−1

n∑
i=1

||∆i||3

I3,2 = n−1

n∑
i=1

n−6φ1

0 ||R̂i||3
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To complete the proof of claim 3, it is sufficient to show I3,1 = Op(n
−3φ1) and

I3,2 = Op(n
1/2−6φ1), since they imply n−1/2

∑n
i=1 ||η̂i − ηi||3 is Op(n

1/2−3φ1).

Claim 3.1: I3,1 = Op(n
−3min{φ1,φ2}). The proof is a direct result of Lemma C.1 and

Markov’s inequality; therefore, it is omitted.

Claim 3.2: I3,2 = Op(n
1/2−6min{φ1,φ2}). Consider the following derivations,

I3,2
(1)

≤ n1/2n−6min{φ1,φ2}

(
n−1

n∑
i=1

||R̂i||2
)3/2

(2)
= n1/2 × n−6min{φ1,φ2} ×Op(1)

where (1) holds by Loeve’s inequality (Davidson (1994, Theorem 9.28)), and (2) holds

by part (c) of Assumption 3.2 with Markov’s inequality. This completes the proof of

claim 3.3.

Claim 1 and Claim 2 in the proof of Part 1 imply that T l
n,K is Op(n

−min{φ1,φ2}).

By the same argument used in the proof of Part 2 to bound the non-linear expres-

sion (but using Lemma E.8 instead of part 4 of Lemma C.4), it follows that T nl
n,K is

Op(n
1/2−2min{φ1,φ2}).

E.10 Proof of Lemma C.3

Proof. In what follows, the results are proved for any given sequence K that diverges

to infinity as n diverges to infinity, which is sufficient to guarantee the result of this

lemma.

Part 1: The proof of (C-3) has two steps. The first step shows

E

(n−1/2
k

∑
i∈Ik

(η̂i − ηi)
⊤∂ηψ

z
i

)2
 ≤ Cn−2min{φ1,φ2} , (E.28)
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for some positive constant C = C(p, C1,M1,M2). The second step shows

E

 max
k=1,...,K

(
n
−1/2
k

∑
i∈Ik

(η̂i − ηi)
⊤∂ηψ

z
i

)2
 ≤ CKn−1/2n−2min{φ1,φ2}+1/2 (E.29)

which is sufficient to prove (C-3) by using Markov’s inequality and 1/2 < 2min{φ1, φ2}.

Step 1: Consider the following derivation

E

(n−1/2
k

∑
i∈Ik

(η̂i − ηi)
⊤∂ηψ

z
i

)2

| (Wj : j /∈ Ik)


which is equal to

(1)
= E

[
n−1
k

∑
i∈Ik

(
(η̂i − ηi)

⊤∂ηψ
z
i

)2 | (Wj : j /∈ Ik)

]
(2)
= n−1

k

∑
i∈Ik

(η̂i − ηi)
⊤E
[
(∂ηψ

z)(∂ηψ
z)⊤ | (Wj : j /∈ Ik)

]
(η̂i − ηi)

(3)

≤ C1 × p× n−1
k

∑
i∈Ik

||η̂k(Xi)− η0(Xi)||2

where (1) by the i.i.d zero mean of the random vectors {(η̂i − ηi)
⊤∂ηψ

z
i : i ∈ Ik}

conditional on (Wj : j /∈ Ik) that holds by part (b) of Assumption 3.1, (2) holds

since η̂i − ηi are not random conditional on (Wj : j /∈ Ik), and (3) by part (d) of

Assumption 3.1 and Loeve’s inequality (Davidson (1994, Theorem 9.28)).

Using the previous derivations, it follows

E

(n−1/2
k

∑
i∈Ik

(η̂i − ηi)
⊤∂ηψ

z
i

)2
 ≤ E

[
C1 × p× n−1

k

∑
i∈Ik

||η̂k(Xi)− η0(Xi)||2
]

(1)
= C1 × p× E

[
||η̂k(Xi)− η0(Xi)||2

]
(2)

≤ Cn−2min{φ1,φ2}

for some positive constant C = C(p, C1,M1,M2), where (1) holds since η̂k(Xi)−η0(Xi)

are i.i.d. for i ∈ Ik, and (2) by part 2 of Lemma C.4 and (E.31), which defines the

56



constant C. This completes the proof of step 1.

Step 2: Note that the maximum of K positive number is bounded by their sum.

Using this observation and (E.28), it follows (E.29).

Part 2: The proof of (C-4) is similar to the proof part 1. It follows from the following

inequality:

E

[
max

k=1,...,K
n−1
k

∑
i∈IK

||η̂i − ηi||2
]
≤ E

[
K∑
k=1

(
n−1
k

∑
i∈IK

||η̂i − ηi||2
)]

= KE
[
||η̂i − ηi||2

]
≤ Kn−1/2O(n−2min{φ1,φ2}+1/2) ,

which goes to zero since 1/2 < 2min{φ1, φ2}, and this is sufficient to prove (C-4) by

using Markov’s inequality.

Part 3: The proof of (C-5) follows from (C-3), by using ∂ηmi = ∂ηψ
b − θ0∂ηψ

a and

|θ0| ≤M
1/4
1 /C0 (due to parts (a) and (c) of Assumptions 3.1 and (2.3)).

Part 4: The proof of (C-6) follows from (C-3) and (C-4) and the following inequality∣∣∣∣∣n−1
k

∑
i∈Ik

ψ̂a
i − ψa

i

∣∣∣∣∣ ≤ n
−1/2
k

∣∣∣∣∣n−1/2
k

∑
i∈Ik

(η̂i − ηi)
⊤∂ηψ

z
i

∣∣∣∣∣+ C2pn
−1
k

∑
i∈Ik

||η̂i − ηi||2

which holds due to Taylor expansion and mean valued theorem, part (e) of Assump-

tion 3.1, and Loeves’ inequality.

E.11 Proof of Lemma C.4

Proof. For i ∈ Ik, denote ∆i = ∆b
i +∆l

i, where

∆l
i = n−φ1

0 n
−1/2
0

∑
j /∈Ik

δn0,j,i ,

∆b
i = n−φ2

0 n−1
0

∑
j /∈Ik

bn0,j,i ,

Here, δn0,j,i = δn0(Wj, Xi) and bn0,j,i = bn0(Xj, Xi), and δn0 and bn0 are functions

satisfying Assumption 3.2. In what follows, the results are proved for any given
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sequence K that diverges to infinity as n diverges to infinity, which is sufficient to

guarantee the result of this lemma.

Part 1: By part (a) of Assumption 3.2,

η̂i − ηi = ∆l
i +∆b

i + n
−2min{φ1,φ2}
0 R̂i

and by Loeve’s inequality (Davidson (1994, Theorem 9.28)),

||η̂i − ηi||4 ≤ 33
(
||∆l

i||4 + ||∆b
i ||4 + ||n−2min{φ1,φ2}

0 R̂i||4
)
.

Using the previous inequality, it follows

n−1

n∑
i=1

||η̂i − ηi||4 ≤ 33

(
n−1

n∑
i=1

||∆l
i||4 + n−1

n∑
i=1

||∆b
i ||4 + n

−8min{φ1,φ2}
0 n−1

n∑
i=1

||R̂i||4
)

(1)

≤ 33

(
Op(n

−4min{φ1,φ2}) + n
−8min{φ1,φ2}
0 n−1

n∑
i=1

||R̂i||4
)

(2)
= Op(n

−4min{φ1,φ2}) , (E.30)

where (1) holds by Markov’s inequality and Lemma C.1, and (2) holds by part (d) of

Assumption 3.2 and since n0 = ((K − 1)/K)n, which completes the proof of part 1.

Part 2: By part (a) of Assumption 3.2,

η̂i − ηi = ∆l
i +∆b

i + n
−2min{φ1,φ2}
0 R̂i

and by Loeve’s inequality (Davidson (1994, Theorem 9.28)),

||η̂i − ηi||2 ≤ 3||∆l
i||2 + 3||∆b

i ||2 + 3||n−2φ1

0 R̂i||2 .

Using the previous inequality, it follows

E[||η̂i − ηi||2] ≤ 3E[||∆l
i||2] + 3E[||∆b

i ||2] + 3E[||n−2φ1

0 R̂i||2]
(1)

≤ 3E[||∆l
i||4]1/2 + 3E[||∆b

i ||4]1/2 + 3n
−2min{φ1,φ2}
0 O(1)

(2)
= O(n−2min{φ1,φ2}) , (E.31)
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where (1) holds by Jensen’s inequality and part (c) of Assumption 3.2, and (2) holds

by Lemma C.1 and since n0 = ((K − 1)/K)n. This completes the proof of part 2.

Part 3: It follows from parts 2 and Markov’s inequality.

Part 4: It follows from part 2 and by using that n1/2−min{φ1,φ2} = o(1).

Lemma E.1. Suppose Assumptions 3.1 and 3.2 hold. In addition, assume K is such

that K ≤ n, K → ∞ and K/nγ → c ∈ [0,+∞) as n→ ∞.

1. If γ = 1/2, then

max
k=1,...,K

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa(Wi, ηi)− J0)/J0

∣∣∣∣∣
−1

= Op(1)

2. If γ = 1/2, 1/4 < min{φ1, φ2} and φ1 ≤ 1/2, then

max
k=1,...,K

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa(Wi, η̂i)− J0)/J0

∣∣∣∣∣
−1

= Op(1)

3. If γ = 1, then

∣∣∣∣∣n−1

n∑
i=1

ψa(Wi, ηi)/J0

∣∣∣∣∣
−1

= Op(1)

4. If γ = 1 and φ1 > 1/4, then

∣∣∣∣∣n−1

n∑
i=1

ψa(Wi, η̂i)/J0

∣∣∣∣∣
−1

= Op(1)

where ηi = η0(Xi), η̂i is as in (2.5), and J0 = E[ψa(Wi, ηi)].

Proof. Part 1: Consider M > 1 and the following derivations

P

 max
k=1,...,K

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa
i − J0)/J0

∣∣∣∣∣
−1

≤M


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(1)
= P

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa
i − J0)/J0

∣∣∣∣∣
−1

≤M

K

= P

(
1/M ≤

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa
i − J0)/J0

∣∣∣∣∣
)K

≥ P

(
1/M ≤ 1 + n−1

k

∑
i∈Ik

(ψa
i − J0)/J0

)K

=

{
1− P

(
n−1
k

∑
i∈Ik

(ψa
i − J0)/J0 < −(M − 1)/M

)}K

(2)

≥

{
1− P

(∣∣∣∣∣n−1
k

∑
i∈Ik

(ψa
i − J0)/J0

∣∣∣∣∣ > (M − 1)/M

)}K

(3)

≥

1− ((M − 1)/M)4n−2
k E

∣∣∣∣∣n−1/2
k

∑
i∈Ik

(ψa
i − J0)/J0

∣∣∣∣∣
4


K

(4)

≥
{
1− ((M − 1)/M)4n−2

k 10E
[
|(ψa

i − J0)/J0|4
]}K

(5)

≥ 1− ((M − 1)/M)4n−2K210E
[
|(ψa

i − J0)/J0|4
]
K

(6)

≥ 1− n−2+3/2(Kn−1/2)3((M − 1)/M)4O(1)

(7)

≥ 1− o(1)

(1) holds since {ψa
i : 1 ≤ i ≤ n} are i.i.d. random variables and because {Ik : 1 ≤ k ≤

K} defines a partition of {1, . . . , n}, (2) holds since M > 1, (3) holds by Markov’s

inequality, (4) holds since {ψa
i − J0 : i ∈ Ik} are zero mean i.i.d. random variables,

(5) holds by Bernoulli’s inequality, (6) holds by parts (a) and (c) of Assumption 3.1,

and (7) holds since K = O(n1/2).

Part 2: Define the event En,ϵ = {maxk=1,...,K

∣∣∣n−1
k

∑
i∈Ik(ψ̂

a
i − ψa

i )/J0

∣∣∣ < ϵ}. Now,

consider an small ϵ > 0 and M > 1 such that (1/M + ϵ)−1 > 1 and the following

derivations

P

 max
k=1,...,K

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa
i − J0)/J0 + (ψ̂a

i − ψa
i )/J0

∣∣∣∣∣
−1

≤M


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= P

(
min

k=1,...,K

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa
i − J0)/J0 + (ψ̂a

i − ψa
i )/J0

∣∣∣∣∣ ≥ 1/M

)

≥ P

(
min

k=1,...,K

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa
i − J0)/J0 + (ψ̂a

i − ψa
i )/J0

∣∣∣∣∣ ≥ 1/M, En,ϵ

)
(1)

≥ P

(
min

k=1,...,K

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa
i − J0)/J0

∣∣∣∣∣ ≥ 1/M + ϵ, En,ϵ

)

≥ P

(
min

k=1,...,K

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa
i − J0)/J0

∣∣∣∣∣ ≥ 1/M + ϵ

)
− P (Ec

n,ϵ)

(2)

≥ P

 max
k=1,...,K

∣∣∣∣∣1 + n−1
k

∑
i∈Ik

(ψa
i − J0)/J0

∣∣∣∣∣
−1

≤ (1/M + ϵ)−1

− o(1)

(3)

≥ 1− o(1)− o(1)

where (1) holds because mink=1,...,K −
∣∣∣n−1

k

∑
i∈Ik(ψ̂

a
i − ψa

i )/J0

∣∣∣ > −ϵ conditional on
the event En,ϵ and triangular inequality, (2) holds since P (Ec

n,ϵ) = o(1) due to Lemma

C.3 (here I use 1/2 < 2min{φ1, φ2} and φ1 ≤ 1/2), and (3) holds by the same argu-

ments presented in the proof of Part 1 by using (1/M + ϵ)−1 instead of M ; therefore,

it is omitted.

Part 3: Consider M > 1 and M̃ > 1 such that M̃ < ((M − 1)/M)n1/2 and the

following derivations,

P

∣∣∣∣∣n−1

n∑
i=1

ψa
i /J0

∣∣∣∣∣
−1

> M

 = P

(∣∣∣∣∣1 + n−1

n∑
i=1

(ψa
i − J0)/J0

∣∣∣∣∣ < 1/M

)
(1)

≤ P

(
n−1/2

n∑
i=1

(ψa
i − J0)/J0 < −((M − 1)/M)n1/2

)
(2)

≤ P

(
n−1/2

n∑
i=1

(ψa
i − J0)/J0 < −M̃

)
(3)
= Φ(−M̃/σa) + o(1)

where (1) holds since M > 1, (2) holds by definition of M̃ , and (3) holds by CLT as

n → ∞ (here, σ2
a is as in (C-2)). To complete the proof, note that Φ(−M̃/σa) → 0
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as M̃ → ∞.

Part 4: Define the event En,ϵ = {
∣∣∣n−1

∑n
i=1(ψ̂

a
i − ψa

i )/J0

∣∣∣ < ϵ}. Now consider an

small ϵ > 0 and M > 1 such that (1/M + ϵ)−1 > 1. Note that P (Ec
n,ϵ) = o(1) due

to Lemma C.2 (here I use min{φ1, φ2} > 1/4). The proof is completed by similar

arguments presented in part 2 and part 3; therefore, it is omitted.
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