Online Appendix to “On the Asymptotic Properties of

Debiased Machine Learning Estimators”

Amilcar Velez
Department of Economics
Northwestern University

amilcare@u.northwestern.edu

This version: November 3, 2024.
Newest version here.

E Proofs of Auxiliary Results

Notation: Recall 7; = 7,(X;) for i € Z and ny = n/K is the number of obser-
vations on the fold Z. Denote ¢? = ¢*(Wi,n;) and ¢7 = ¢*(W;, 7)) for z = a, b;
m; = m(W;,0p,m:), and m; = m(W;,00,1;); Oym; = O,m(W;,0p,m;) and 0,m,; =
Oy (Wi, 0o, i); Oxmy = 0;m(Wy, 0,n;) and 07, = 0ym(W;, 0,7;) . Here, || - || is
the euclidean norm (¢ norm), Jy = E[¢)¢], CLT is for Central Limit Theorem, LLN
is for Law of Large Numbers, LIE is for Law of Iterated Expectations, C-S is for
Cauchy-Schwartz inequality, RHS is for right-hand side.

E.1 Proof of Theorem C.1

Proof. Using the notation of this section, the definitions of the DML1 estimator in
(2.6) and the moment function m in (2.2), it follows
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and similarly for the oracle version defined in (2.8),
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Using the previous two expressions,
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In what follows, I will show that both I; and I, are o,(1), which is sufficient to

complete the proof of the theorem.

Claim 1: I = 0,(1). I first rewrite I; using the identity a(1+b)~' = a — ab(1 +b)™*

with a = fl,k and b = I ;,, where
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To show the claim, consider the following derivations
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where (1) holds by triangular inequality used on (E.1) and definition of I; &, (2) holds
by definition of fl,k and part 2 of Lemma E.1, and (3) hold by part 3 of Lemma C.2
and (E.2) presented below,

K
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I use Taylor expansion and the mean value theorem to write 1, = I1 15 + 124

and I,y = ng *(Iuy g + Lok + 11 3), where
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with 92m; = 02m(Wj, 6o, 7;) for some 7;, due to mean value theorem, and similar for
0%)¢. In what follows I prove K~1/2 S P, sl k] = 0,(1) for i = 1,2
and j, = 1,2, 3, which is sufficient to prove (E.2).

Claim 1.1: K=1/? Zszl n,zl/2|f1,1,k||ll,17k| = 0,(1). Consider the following
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where (1) holds by definition of I, (2) holds by Lemma C.3 and the derivation



presented below, and (3) holds since K = O(n'/?).
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where (1) holds since I; 1 x are i.i.d. random variables, (2) holds by Jensen’s inequality

and definition of I, and (3) holds since {¢)¢ — Jy : i € Zy} are zero mean i.i.d.

random variables and by parts (a) and (c¢) of Assumption 3.1.

Claim 1.2: K=Y25 K 0 V2|13 4] x| Las| = 0,(1). Tt follows by
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where (1) holds by Lemma C.3 and because K = O(n'/2).

Claim 1.3: K=Y25 K 0 V2|13 || Ls k| = 0,(1). Tt follows by
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where (1) holds by part (e) of Assumption 3.1 and Loeve’s inequality (Davidson (1994,

Theorem 9.28)), (2) holds by Lemmas C.3 and C.4 and because K =

O(n'/?), and



(3) holds since min{y1, p2} > 1/4.

Claim 1.4: K=Y25 5 0 2|1 o 4]|Lia k| = 0,(1). Consider the following derivations,
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where (1) holds by Cauchy-Schwartz and definition of I; 54, (2) holds by part (e) of
Assumption 3.1 and Loeve’s inequality (Davidson (1994, Theorem 9.28)), (3) holds
by Jensen’s inequality, (4) holds by Lemma C.4, (5) holds because K = O(n'/?),
E[K 'K [Liaxl?] = O(1) by definition of I 1, and due to parts (a) and (c) of
Assumption 3.1, and (6) holds since min{y, p2} > 1/4.

Claim 1.5: K=Y23 K V2|15 4 ||Liak] = 0,(1). The proof is similar to the proof
of Claim 1.3; therefore, it is omitted.

Claim 1.6: K-35 n;1/2|f1727k| X |11 3| = 0p(1). Consider the derivations,
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where (1) holds by using the definition of [Alygyk and [y 3%, part (e) of Assumption
3.1, and Loeve’s inequality (Davidson (1994, Theorem 9.28)), (2) holds by Jensen’s
inequality, (3) holds by Lemma C.4, and (4) holds since min{ey, ¢o} > 1/4.

Claim 2: Iy = 0,(1). Consider the following representation of I,
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To show the claim, consider the following derivation
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where (1) holds by triangular inequality and definition of /5, and (2) by Lemma E.1
and (E.3) presented below,

K
K 0P Ll Lol = 0p(1) - (E.3)
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As in the proof of claim 1, I use Taylor approximation and mean value theorem to



write Iy = Io1 i + I22%, Where
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Finally, in what follows I prove K~Y23" 0. "?| L illlak| = 0,(1) for j = 1,2,
which is sufficient to prove (E.3).

Claim 2.1: K~1/? Zszl n;1/2|f2,17k||127k| = 0p(1). The proof is similar to the one in

Claim 1.1; therefore, it is omitted.

Claim 2.2: K=V255 02|15 || Ll = 0,(1). The proof is similar to the one in
Claim 1.4; therefore, it is omitted. [

E.2 Proof of Theorem C.2

Proof. Notation: In the proof of this theorem, z,, x = 0,(1) denotes a sequence of ran-
dom variables x,, x converging to zero uniformly on K — oo as n — oo (equivalently,

limy, 00 SUP <, P (|70, x| > €) = 0 for any given € > 0).

Using the definitions of the DML2 estimator in (2.7) and the moment function m
in (2.2), it follows
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and similarly for the oracle version defined in (2.9),
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Using the previous two expressions, it follows
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In what follows, I show that Iy = 7! ( + 7" +0,(n"¢) and I = 0,(n"¢), which is suffi-
cient to complete the proof of the theorem since both 7, - and 7" are O,(n~#") and
Op(nl/ 272¢1) respectively, under Assumptions 3.1 and 3.2 and by the proof of Proposi-
tions C.4 and C.5. Furthermore, if Assumption 3.3 holds, part 2 of Proposition C.5 im-
plies Var[n?#1 =127 | = Gs(K?—3K+3)(K —1)" "2 Kie1-tppter—lpnl which im-
plies that lim,,, - inf <, Var[p?$1~1/ 27;”%] > (. Part 1 of Proposition C.5 implies that
SUDfc<, N2 VP E[T ]| < 00; then, limy, o Supgc, B[(n* 72T )%] < co. Simi-

larly, the proof of Propositions C.4 guarantees limy, o Sup g, E[(n?' 7, ;)?] < oo.

Claim 1: Iy = T}y + T + op(n™¢). 1 first rewrite the RHS of (E.4) using the
identity a(1+ b)~' = a — ab(1 + b)~!, where a = n=V23""  (1h; —my)/Jo and b =
n S (¢ — Jo)/Jo. That is

I =a—ab(1+b)"!

I then conclude the proof of the claim by using claims 1.1 and 1.2, stated below.

Claim 1.1: a = T} + T + 0,(n~¢). This result holds by part 4 of Lemma C.2

since a = n~1/2 Z?zl(mz’ —m;)/Jo.

Claim 1.2: ab(1 4+ b)™' = 0,(n™¢). Note that part 4 of Lemma C.2 implies a =
O, (n/2=%1). Note also that part 2 of Lemma C.2 and CLT imply b = O,(n~%/?),
which guarantees that (1 +b)~' = O,(1); therefore, ab(1 4+ b)~* = O,(n~2%*), which
is 0,(n™¢) since ¢; < 1/2.

Claim 2: Iy = 0,(n™°). 1 first rewrite Iy defined in (E.5) as follows,
L=ab(l+c—b)" 1+e) !,

where a = n=2 350 mi/Jo, b = n S (6 — 0f)/Jo, and ¢ = n7t S0 (4 —



Jo)/Jo. CLT implies that a = O,(1) and ¢ = O,(n"'/2). Part 2 of Lemma C.2 implies
b= O,(n=?%). Therefore, ab = O,(n~2%*), and both (1 +c¢—b)"! and (1 +¢)™" are
O,(1). This implies Iy is O,(n=2#'), which is 0,(n°) since ¢; < 1/2. O

E.3 Proof of Proposition C.1

Proof. Part 1: By the definition of the oracle version of the DMLI1 estimator in (2.8)
and the moment function m in (2.2), it follows
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[ first rewrite the RHS of (E.6) using the identity ax(1 + by)™' = ap — apbp +
apbi(1+4by,)~" with a; = n;l/z > ier, Mi/ Jo and by = n; ' > ier, (W — Jo)/Jo. That is
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By CLT, it follows I; = n="25"  m;/Jo % N(0,02) as n — oo, where o2 is as in
(2.11). Therefore, if I, — K/y/nA and I3 are 0,(1), then

w2 (00 = 00) =020 mafdo + K/vRA + 0,(1)
i=1

which is sufficient to complete the proof of part 1 since K/y/n — ¢ as n — co. In
what follows, Claim 1 shows I, — K/y/nA = 0,(1) and Claim 2 shows I3 are o,(1).



Claim 1: I, — K/y/nA = 0,(1). First, note that E[—aby] = K'/2/\/nA due to the

following derivations,
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where (1) holds by definition of ax and bg, (2) holds since {(m;, ¥¢ — Jo) : i € Iy}
are zero mean i.i.d. random vectors, and (3) holds by the definition of A in (3.6) and
condition (2.1).

Therefore, E[I,] = —K /238 | Elagby] = K/y/nA, which implies that the claim
is equivalent to show that I, — E[l5] is 0,(1), which follows by the following derivations

E (I, — E[IL])?] Vg (K—1/2 > (axby — E[akbk]))

k=1
@ K
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(5)
2 oE ( I/ZZml/%) < E (n;/?Z(wf - Jo)/J())

1€Ty 1€Ly

©, (1) x

where (1) holds by definition of I5; (2) and (3) hold since {arby — Elagbg] : 1 <
k < K} are zero mean i.i.d random variables due to the definition of a; and by; (4)
holds by definition of a; and by; (5) holds by Cauchy-Schwartz; and (6) holds since
{(my, ¢ — Jo) : i € I}} are zero mean ii.d. random vectors, parts (a) and (c) of

Assumption 3.1, and ni — oo. This completes the proof of Claim 1.
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Claim 2: I3 = o0,(1). Consider the following derivation

-1

(1) K
5] < max |1+m" SOWE—Jo)/Jo| X KTV Jaxlb;
k=1
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where (1) holds by definition of I3 and triangular inequality, and (2) holds by Lemma
E.1 and (E.7) presented below,

K
K23 Japli = 0,(1) . (E.7)
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To prove (E.7), consider the following

E

K K
o)
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k=1 k=1

97 1/2 47 1/2

o) Kl/Qn,;lE (n,;l/2 Z mi/J())

€Ty

x E (n,;m Z(Ml - Jo)/Jo>

i€y,
) (Kn~Y/2)32=1/40(1) x O(1)

Do),

where (1) holds by Cauchy-Schwartz, (2) holds since {(ax, b} : 1 < k < K} are i.i.d
random vectors and the definition of a; and by, (3) holds since {(m;, v¢ —Jy) : i € Ij;}
are zero mean i.i.d. random vectors, and parts (a) and (c) of Assumption 3.1, and
(4) holds since K = O(n'/?). This completes the proof of Claim 2.

Part 2: By the definition of éle in (2.9), and the moment function m in (2.2), it

follows

. —1zNmn ,
nl/2 (e;kﬂ B 90> _n - an:l TZ:/JO
7 n=t i v/ Jo

Since the denominator converges to 1 in probability by the LLN and the numerator
converges to N(0,0?) in distribution due to the CLT, it follows that n'/? (é;‘;Q — 90>
converges in distribution to N(0,¢?). This completes the proof of part 2 ]
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E.4 Proof of Proposition C.2

Proof. Part 1: By the definition of the oracle version of DML2 estimator in (2.9),

and the moment function m in (2.2), it follows

N —1/227} ooy
2 (i = 8y) = " T s
SRR D ST =5

I rewrite the RHS of (E.8) using the identity a(1 + )™ = a — ab + ab?*(1 +b)~!
with a =n~Y23"" m;/Joand b=n"13"" (¢ — Jy)/Jo. That is
n'/? (é:LQ - 90> =a—ab+ab*(1+b)""

(é) 7;*+7:1dml2+0,62(1+b)_1

where (1) holds by the definition of 7.* and 7,%™2. It is sufficient to show ab?(1+b)~!
is Op(n~1) to complete the proof, which follows by CLT that implies a = O,(1) and
b=0,(n"?), and (1+b)~' = 0,(1).

Finally, consider the following derivations

(n_1/2 Z mi/J0> <n_1/2 > oW - Jo)/J())]

=1

E[Tdm2) @ 2R

—~
~

= 2N
where (1) holds by the definition of 7,92 and (2) holds since {(m;, (Y2 — Jy)/Jo) :
1 <i < n} are zero mean i.i.d. random vectors and by the definition of A in (3.6).

Part 2: By definition of ¢? and since {(m;/Jy) : 1 < ¢ < n} are zero mean i.i.d.
random variables, it follows that E[7,*] = 0 and E[(7,*)?] = o2.

Part 3: First note that Cov(T*, T9™2) = E[(T)(T,%™?)]. Now, consider the follow-

ing derivations,

E[(T7)(T¢m2)] Y —n = 2E (n*”f)mi/h) (n‘1/2§n:<¢$—Jo)/Jo>

=1

& B [(maf o) (8 — To)/ Jo)]
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(3) 1=
= —nNn 1:1

where (1) holds by definition of 7.* and 7,92 (2) holds since {(m;/Jo, (V¢ —Jo)/Jo) :
1 <i < n} are zero mean i.i.d. random vectors, and (3) holds by definition of =; in

(C-1).
Similarly, consider the following derivations

n

n 2 2
Var[T2) 2 n'E (n“ *D_mif Jo> (n” 2y Wi - Jo)/Jo> — A2
=1

& (Elma/ Jo) BN — Jo)/Jo)?] + 242 + O(n™")) — n”'A?

) n~ (0?02 + A?) + O(n™?)

Il

where (1) holds by definition of 7,92 and A in (A-4) and (3.6), respectively, (2)
holds since {(m;/Jo, (V¢ — Jo)/Jo) : 1 < i < n} are zero mean i.i.d. random vectors
and by definition of A, and (3) holds by definition of 6% and ¢2 in (2.11) and (C-2),
respectively. ]

E.5 Proof of Proposition C.3

Proof. For i € Iy, denote A; = Ab + Al where

I, —p1, —1/2
A; =mng"ny Ong,jsi »
J¢T

b _  —p2, —1
A =ny"ng E :bno,j,i )
J¢T

Here, 8,50 = 0no(W;, X;) and by, j; = by (X;,X;), and 0,, and b,, are functions
satisfying Assumption 3.2.

Part 1: Using the previous notation, it holds that E[(A;)T8,m;/Jo] = 0. To see this,

consider the following derivations

E[(A:) " 0ymi/ Jo] YE (AN E[0ymifJo | (W; 2 j ¢ Tp), Xi]|
2 E[(A)TE [0ymi/ o | Xi]
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®) 0,

where (1) holds by the law of interactive expectations and because A, is non-stochastic
conditional on (W; : j ¢ Z;) and X;, (2) holds since {W; : 1 < j < n} are i.i.d.
random vectors and i € Zj, and (3) holds by the Neyman orthogonality condition
(part (b) of Assumption 3.1).

Therefore, E[T,! x] = 0 holds due to the definition of 7! 4 in (A-3) and the previous

result,

E[T! —n*WEZE )T 0ymi ) Jo]

=0.

Part 2: By part 1, Var[T! ] = E[(T! )?]. Now, consider the following decomposi-

tion:

E[(T. ) = ( -1/22 )To mz/Jf))

=n! Z:l Z:l E 21 Ta mzl/JO) ((Ai2>Taﬁmi2/J0)]

=L +2L+ 1,

where I use A; = Al + Ab in the last equality, with I;, I5, and I3 defined below,

I = nt Z Z E Ta m’Ll/JO) (( )Ta??mlé/']())}

n! Z z E[((A4) 0, /o) ((AL)T0,me, /)]
Iy=n! Z Z E[((A%)0ymi, /o) ((A)T0,mi, /o))

In what follows, I show I = ng **'G% + o(n=2%1) with G% defined as in (A-6), I = 0,
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and I3 = O(n~%¢1), which is sufficient to complete the proof of Part 2.

Claim 1: I, = ny>*'G% + o(n~=2#1). Consider the following derivations,

I
WSS B (L) Oy o) (L) By o)

i1=1149=1
1= . 2=

=n"! Z Z Z na2<p1nal Z Z E nO]l 118 mll/‘]o) ( n0,j2, 128 mi2/J0)}
k1,ke=11i1€ZLy, i2€Ly, J1€Tky Jo& Lk,

(1) n Z Z Z n02s01 o' Z Z E noh na mil/‘]o) ( n0,j2, 128 ml2/‘]0>} [{kl 7 kz}
k1,k2=11i1€Ty, io€ly, J1€Zky j2&Lk,

+n71 Z Z Z g 0 71 Z Z no J1, 118 mll/J()) ( n0,J2, 12a m”/JO)] I{Zl 7£ iz}
k=1 i1€T}, i2€Ty 18Tk j2 &Ly

K
+nt Zznawlngl Z Z E no 1.0 mZ/Jo) ( 12,0 mZ/JO)]

k=1 i€y J1€Ty jo &Lk

K
(2:) n_l Z Z Z ”a%malE no i2, ’Lla mll/‘]o) ( ng,i1, 126 mZQ/J())} ]{kl 7& kQ}

k1,ko=111 GIkl i2€Ik2

K
+”_IZ Z Z n02¥’1 0 Z Z noh z18 mu/JO) ( 10,52, 128 mw/‘]o)] ]{il 7é iQ}

k=1 i1 €Ty, i2€Ty 71Ty jo &Ly
K
-1 —2¢p1, —1
+n E E ny 'ng E E] noﬂﬁ m;/Jo) ( no”(? m;/Jo)]
k=1 €Ty J¢Ty

(3) _1 Z Z Z TLO 0 _1E no 12, Z1a mll/‘]o) ( 70,81, 228 mZQ/JO)} [{kl 7& k2}

k1,k2=1141€Ly, i2€L,

K
+n7122n62“"1n51 ZE noﬂﬁ mZ/JO) ( nwa mZ/JO)]

k=1 i€Zy, 7€y
4) -
i—1§:§: }: —2p1, —1
=n L) L E no 19, zla mll/‘]o) ( n0,i1, Zga ml2/‘]0)]
ki=1i1€ly) i2¢ Ty,

167 B [ (0 3,00/ Jo) (924,500 Jo) ]

TLO]l

2027 (B (850000 o) (87,505,001 o)) + B (87, ,04ma/ o) (8, 5.:05mi/ ) )

nQ,i2,i1
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2 g G+ o(n ) |

where (1) holds because there are 3 possible situations for iy € Zy, and iy € Zy,: i)
ki # ko, ii) ki = ko but i1 # iy, and iii) i; = 79, (2) holds by the law of iterative

expectations and since

[<5T 0 mil/‘]l)) ( n0,i1, lga mlz/JO) |Xl1aVV127VVJ1’W } =0 3 when 7;1 7&]2

no,i2,i1

and

[((5T 0 mil/‘]o) ( n0,i1, lga mlz/JO) ‘Xlzamnvvjlﬁw } =0 ) when 7;2 7&]1 )

10,812,411

(3) holds by the law of iterative expectations and since
[(520 2J1s 118 mll/‘]o) ( n0,J2, Zza mi2/J0) ‘ Xl27 VVZU WJU W } =0 ’When 7;1 7é Z‘2 )

(4) holds since {(6, ;0ymi/Jo) : j ¢ I} are iid. random variables conditional

on W; (here I use ¢ € Zj), by noting that 22:1 Ly they Zi2elk2(~) = Zigﬂkl(')’ and
recalling that ng is the number of observations outside the fold Zj, (5) holds because

the random variables { (6] ;, ; 8ymi, /Jo) (00, 5,0nmiy/Jo) i1 # iz} are identically

n0,12,41

distributed, and (6) holds by the definition of G% in (A-6) and n/2 < ny < n. This

completes the proof of claim 1.

Claim 2: Iy = 0. First, consider the following derivations

E [((AL)T0ymi, [ Jo) ((AL)T0ymiy/ Jo)]
(2 n07<p17902n63/2 Z Z E [ 70,51, 116 mh/JO) ( 10,32, 128 mi2/‘]0)}

Ji ¢Ik1 j2¢2k2

@ 0,

where (1) holds by definition of Al and A%, and (2) holds by considering 3 possible

cases:

o If j; # iy and j; # jo (ji1 different than all other sub-indices), then

[(6T 0 mh/‘]o) ( 10,52, 228 mi2/‘]0) | Wil’m2’WjQ] =0,

n0,j1,41

16



since E0ng j1.iy | Wiy, Wiy, Wj,] = 0 due to part (a) of Assumption 3.2.

e If j; =iy, then iy # i; (otherwise j; € Z,) and
[(67—{0 7,2 ’Lla mZI/JO) ( no ]2 128 miQ/JO) | WiQ?Xi17 W]Q] = O 9
since E0ngipin | Wiy, Xiy, Wj,] = 0 due to part (a) of Assumption 3.2.
o If j; = jo = j, then
[(5;]218 mzl/JO) ( noyma mlz/JO) | X5 Wiy, V[/Zz] =0,
since E[dy, 4 | Xj, Wiy, Wi,] = 0 due to part (a) of Assumption 3.2.

Therefore,

Iy =n" Z ZE Ta mn/JO) (( )T&,mi?/Jo)}

i1=112=1

=0,

which completes the proof of claim 2.

Claim 3: I3 = O(n=2%1). Algebra shows

S S B (AL Dy /) ((AL) Oy )]

i1=119=1
n-! 2@2 —2
Z Z Z o Z Z no J1, 118 mzl/‘]o) ( no,jz, 226 mi2/‘]0)]
k1,ko=1141€Ty, i2€Ly, 31¢Ik1 ]2¢Ik2

K
2 n” Z Z Z 7’L52w2n0_2E no iz, i mll/‘]o) ( 0,1, 128 m12/‘]0)}

ki=11 E_Zkl ’L'2¢Ik1

_IZZ’RO&” _2ZE noﬂﬁ ml/Jo)(nojﬁ mz/Jo)}

k=1 i€y J¢T
& g E [(ng#b,, . 0ymi) o) (ng#2b),  0gmi)Jo)]
+ g E [(ng by, ;:09mi/) Jo) (ng#2by, 5:00ma/ Jo)]

< it (B [ (g #b5, 500mi/ 50)°]) v (B [ (ng#2b], ;001 o) ])1/2

17



n0,7,%

15 E [ (g b}, 5 0ymif o) |

@ -
< 2(pC1/Co)ng E [IIng ™ bug .l ]

®
< 2(pC1/C)ng 'ng g

9 ot

where (1) uses the same argument to calculate I;, (2) holds since the random vectors
{(bry ig.is Onmvis [ Jos by iy 1Oy [ o) < iy # i} are identically distributed, (3) holds by
Cauchy-Schwartz inequality, (4) holds by the inequalities (E.9) and (E.10) presented
below where C is a constant depending only on (Cy, C1, M), (5) holds by part (b.4)
in Assumption 3.2, and (6) holds since n/2 < ng < n and 7,, = o(1).

E | (0977 500mi/ J0)° | < (0C1/CE [IIng bl ] (E.9)
B | (197} 0,00m:/ )" | < (0C1/CDE [|Ing bl ] (E.10)

To verify (E.9) consider the following derivation,

\_/

n0,J,% no,J,% nO»J}i}

E [( S22 0ymi) o) } Y B [ng?b] B [(@yma) o) (0ymi) Jo)T | X;, Xi] ng#2b

2

< (1/CH)E [ng by, ;. B [(0gmi)(8yms) T | Xi] ng by i)
3

—
~

n0,J,%

—~

< p(C1/C3)E [I1ng by jal ]

where (1) holds by LIE and since by, ;; is non-random conditional on X; and Xj;, (2)
holds by part (a) of Assumption 3.1 and independence between X; and X since i # j,
and (3) holds by definition of euclidean norm and since || E[(9,m;)(0ym:)" | Xi]||oo <
Cy = Cy(1 4+ MY*/Cy)? due to parts (d) in Assumption 3.1 and [6| < MV*/C
(which holds by definition of 6y and parts (a) and (c) of Assumption 3.1).

The verification of (E.10) follows the same previous derivations but reverting the
role of i and j. Lastly, it uses that E [||ng by, || = E [||ng “*bng,j4l|*] since by, ;.

and by, ;; have the same distribution for i # j.

Part 3: By Cauchy-Schwartz, parts 3 of Proposition C.2, and part 2 of this

18



proposition,

Cov(T™ T ) < (GRS (K = 1) +0(1) " (%02 + A2 4 o(1) *n7e1 712

which implies the RHS is O(n~#171/2), and this is o(n=2%1) since ¢; < 1/2. O

E.6 Proof of Proposition C.4
Proof. For i € I, denote A; = A? + Al where
A’lL = na¢lnal/2 Z 5”09j7i ?

¢y,

b __ . —p2 —1
A =ny"ng E :bno,j,i )
J¢T

Here, 8,50 = 0no(W;, X;) and by, j; = by (X;,X;), and 0,, and b,, are functions
satisfying Assumption 3.2. Denote H; = 92m;/(2.p).

nl

Part 1: Consider the following decomposition using the definition of 7, in (3.12),

E[TH] =n""?> " E[A]HA
=1

:[1+2[2+[3

where

L=n"'?Y"E[(A)TH;Al

i=1
L=n"'?>"E[(A)THA]
=1
Iy =n""") E[(A)"HA!
=1

In what follows, I show I, = n'/?ny**' Fs + o(n'/>=2#1), I, = 0, Iy = n'/*ny***F, +
o(n'/?72¢1) which is sufficient to complete the proof of Part 1 since ng = ((K —
1)/ K)n.

19



Claim 1: I; = n'?ny*?' Fy + o(n'/>=2#1). Consider the following derivations,

E[(AZ)THA _2801 71 Z Z no J1z <5n07j2,i)]

T¢Iy jo &Iy

2 - —
= 120" Y " E[(Ong i) Hi(Ong )]
&Lk

Q 15 2P E[(8ng i) " Hi(Ong.j0)]

where (1) holds by definition of Al and (2) and (3) hold since {8,,; : j & Zx} are
zero mean i.i.d. random vectors conditional on W; due to part (a) of Assumption 3.2
(here I use that ¢ € Zj;). Therefore,

L= S B (AT H(A)

= 02157 E(6n,5.0) " Hi(Ono.j0)]
D g 1 oo

where (1) holds by definition of Fj in (3.3), Assumption A.1, and because n/2 < ng <

n. This completes the proof of claim 1.

Claim 2: I, = 0. Consider the following derivations,

EI(ADTH(AD] 2 05?2 S ST El(bggii) THil(Gng a)]
J1€Tk j2¢ T

2

where (1) holds by definition of A? and Al, and (2) holds since
E[(bnmh,i)—r(agmi/(zJO))(5n0,j2,i) | ijvij Wl] =0

due to part (a) of Assumption 3.2 ( E[0p, j,.i | Xj,, Wi] = 0). Therefore,

I, = /2 ZE [(A?)T@gmi/(QJO))(Aﬁ)}

=1

20



=0,

which completes the proof of claim 2.

Claim 3: I3 = n'/?*ny>?F, 4 o(n'/?>=271). Denote byy; = Elbn,ji | Xi] for j # i.

Consider the following derivations,

EI(ADTHAD] E 0 05° 33 El(bnoss) Hilbnosas)]

TELk 2 ¢ Tk

(2 — 2 ~
2052152 3" N Elbugii — bugs) Hilbug.joi — bu)

J1€Ty jo &Iy

2 Z Z no it T ~no i)THi(Bno,i”

T¢Iy jo &Iy

2 Z Z TloZ TH no WJ2.0 T Bnoyi)]

J1¢Ty jo &Iy

22 Z nozTH nol)]

J1€Lk j2 &Ly
(i) n82¢2 71E[(bn0ji - Z;no,i)THi<bn07j:i o Eno’i)]
+ 1y szE[(bno Z)TH (bno )]

where (1) holds by definition of A%, (2) holds by adding and subtracting Bno’i, and (3)
holds since {bg.ji — bno.i : 7 & Zi} are zero mean ii.d. random vectors conditional on

W;, which implies E[(bngi) T Hi(bng i — bng.i) | Wi] = 0. Therefore,

= n'?ng g2 El(bng i — bngs) " Hi(bo ji = bnoi)] + 1" *ng 7 E(bng ) " Hi(bny )]
= o(n'/7201) 02020 Bl (b ) Hilbuo)
@ O(nl/Q—Qcpl) +n1/2n52@2Fb+0(n1/2_2“’2)

G n1/2na2go2Fb 4 0(n1/2—2(p1)

where (1) holds by (E.11) presented below and since n/2 < ny < n, (2) holds by
definition of F}, in (3.4) and Assumption A.1, and (3) since ¢; < ¢y and n/2 < ng < n.

na%”E[(bno,j,i - Z;no,i)THi(bno,j,i - bng,i)] = 0(n172<p1) : (E'll)
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To verify (E.11) consider the following derivations,

6% El(bng g = bro.) " Hilbng i = b))

o (2C0) ™ Bll(bugis — bre) 03 (g = b

A
IN=

—
A

(2Co) " (PCa) E|Ing #bug g — 10 “bng.il|*]

—
INe

2(2C0) " (#C3) (EllIng **bugicl ) + EllIng *bual )

—~

49 .
< (pC/Co) (nb™>' 7y + 101

= o(n' ™),

—
=

where (1) holds by triangular inequality and part (a) of Assumption 3.1, (2) holds by
definition of euclidean norm and since || E[02m; | Xi||s < Cy = Co(14+MY*/Cy) due
to part (e) of Assumption 3.1 and |fy| < M'/*/Cy (which holds by definition of 6, and
parts (a) and (c) of Assumption 3.1), (3) holds by standard properties of euclidean
norm, (4) holds by parts (b.3) and (b.4) of Assumption 3.2 with 7,,, = o(1), and (5)
holds since ¢; < 9 and n/2 < ny < n.

Part 2: Consider the following decomposition,

7;%( - E[ﬁé{] =1+ 201y + Iy

where
K
12 2 : —2p1—1 T T
Il,l =n E Un) (5n07j1,iHi5n07jz,i - E[5n07j1,iHi5”07j2’i])
k=1 icTy 1Tk jo¢ Tk
K
o —1/2 —p1—p2—3/2 T T
Lipy=n § E Un) (5no,j1,zHibno,j2,z' - E[5no,j1,iHibnoJ2ui])
k=1 i€} ¢Ly j2¢ Tk
K
12 —2p5—2 T T
Iy =n"">"% "ng (b i Hibrg i = Elbyg g, iHibro o i)
k=1 i€y NELk 24Tk

which implies

VG/T'[,Y;:L%(] =F [(Il,l + QIl,b + [b,b>2]
= E[I})) + E[I},) + AE[I},] + 2E (I 1) + AE[(Iiy + L) 11]
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In what follows, I show E[I}}] = Gs(K* — 3K +3)(K —1)*n 0 ¥+ o(n9), E[I},] =
o(n™¢), and E[I},] = o(n~¢), which is sufficient to complete the proof of Part 2
since ng = ((K — 1)/K)n and by Cauchy-Schwartz it holds E[[;;I,;] = o(n™¢), and
E[(Liy + Lop)Lip) = o(n™°).

Claim 1: E[I})] = G5(K? = 3K +3)(K — 1)"*ng ' + 0(n™¢). Consider the following

notation

1l T T
F]1 J2,i (5710 1, zH 5”0 J2st T [5710 1, zH 5”0 j27i]) :
Note that E [Féf i»i) = 0 by construction, and j; # j» implies
T T
B0, 4, iHi0ng i) =0 and F]”N Ongjr.iHi0ng jai -

Therefore, E[TY | Wi, W;,, Xj,] = 0 and E[TY . .| Wi, W,,, X,,] = 0 when j; # jy

g2, J1.d25
due to part (a) of Assumption 3.2. Furthermore,

B [(T4500) (T i) || < @Ca/Coyng >y, (E.12)

which follows by Cauchy-Schwartz, part (e) of Assumption 3.1, and part (b.2) of
Assumption 3.2, with Cy = Co(1 4+ MY*/Cy).

Using the previous notation, [;; can be written as follows

=n 1/222 —2¢1—-1 Z Z Jljﬂ (E.13)

k=1 lEI}c j1§ZIk j2¢I}C
and E[I?] can be decompose in three terms

r 2
K

BUA =B || n77 3 D ™" > > T

k=1 i€T; 71Ty jo ¢ Ty

k=1 ieZ; ¢ T k=1 i€y 7¢Iy jo ¢TIy

=5+ 1+ 23,

23
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where

- 2
K
- —2p1—1 1l
L=E||n 2> ) ng® Y T3,
k=1 i€T, 4T,
B 2
K
_ ~1/2 —2p1—1 1l ) .
L=E||n Z Z Mo Z Z U5 il {01 # J2}
| k=1 1€y TELk, 2¢ Tk
- . .
— —-1/2 —2p1—-1 Ll —1/2 —2p1—1 1l . .
L=£E n Z Z Mo Z thjz,h n Ny Fjg,j4,i2[{]3 # Ja)
| k1=141€Zy, ¢k, k2=112€Iy, 93¢ Ty JaE Tk,

In what follows, I show that I} = o(n™¢), I, = G5(K? —3K +3) (K —1)"2n, " +
o(n¢), and I3 = o(n~%), which is sufficient to complete the proof of Claim 1.

Claim 1.1 I; = o(n™¢). Consider the following expansion

K K
L = n‘1n54¢1_2 Z Z Z Z Z Z b [(Fiﬁl,jl,il) (F?zl,jz,z‘zﬂ

ki1=1 z‘leIkl j1¢Ik1 ko=11i2€Z) j2¢1k2

1 42 1l 1l
=N Ty § : E Fj1,j1,i1 Fj21j2,i2 )

(41,i2,J1,02)€EE

Where g — {(ilaiQlean) € ['I’L]4 : Z.l S :Z’.k‘p/L.Q S Ik‘g;jl ¢ Ik‘nj? ¢ Ikgakl S [K]7k2 S
(K]}, with [n] denoting {1,...,n}. Let & C [n]* be the subset of indices with distinct

entries. (e.g., i1 & {i2,J1,J2}, G2 & {J1.J2}, J1 # j2). Let E<3 C [n]* be the subset of
indices with at most three distinct entries.

Now, take (i1, 12, j1,7J2) € €N Ey. Tt follows that

1,1 1l o 1l 1, _
L [(thjl,il) (sz,jz,iz)] =E [(Fjl,jhh)] K [(szdz,iz)] =0 )

due to independence and by definition of Féf 1

Therefore,

1 —dgpy—2 1l 1l
|Il| =|n 1nO ot Z L [(Fj17j1,i1> (Fj27j27i2>i|

(i1,i2,51,92) €EN\E
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(1)
-1, —4p1—2 1l 1
S nong Z ‘E [(thjhld) (sz,jm'g)”
(11,82,51,i2)€€E<3

(2) ~
S n—lna4tp1—2 Z (pc«2/c«0)2n(1)—2ap1M1

(i1,02,51,i2)EE<3

®3) ~
< n7ing ™ x 3% x (pCh/Co)Png 2 M,y

2 o(nt-ser)

where (1) holds by triangular inequality and since E\&y C E<s, (2) holds by (E.12), (3)
holds since the number of elements of &3 is at most 3*n?3 (for each 3-tuple (a, b, ¢) € [n]?
consider the functions from the positions {1, 2, 3,4} into the possible values {a, b, ¢},
the number of all these functions is 3% and there number of 3-tuple is n?), and
(4) hold since n/2 < n < n. Therefore, I, is O(n'~%1), which is o(n™°) since
61 — 1 > 4p; — 1 > (. This completes the proof of Claim 1.1.

Claim 1.2: I, = G5(K? — 3K + 3)(K —1)"2n, " + o(n=¢). Consider the following

expansion

Iy = - lpter? i Ty i SN B(T U £ (T s # i}

ki=141€Tk) j1,jo¢Thy k2=112€Ty, j3,ja¢ Ty,

1 42 1l 1l
=N Ny § : E [(Fjl»j27i1 Fj31j47l'2 )

where & = {(i1,i2, J1, J2, J3, ja) € [n]® 1 ix € T, 2 € Tiys 1, Jo € Liys G35 Ja & Liys J1 #
Jo; Js # ja; ki, ke € [K]}. Let & C [n]® be the subset of indices with distinct entries.
Let & C [n]® be the subset of indices with exactly five distinct entries, meaning that
two entries are identical while the remaining entries are distinct. Let £ C [n]% be the
subset of indices with exactly four distinct entries. Let E<3 C [n]® be the subset of
indices with at most three distinct entries. Note that [n]® = E<.3U & U &5 U .

Now, take (iy, 42, 71, J2, 73, J4) € € N E. It follows that

Ll 1l -
E [(Fjl,jg,z'l) (Fjg,n,z'gﬂ =0, (E.14)

are independent zero mean random variables.

and T4

. 1l
since I J3,J4,%2

J1,J2,%1
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Now take (i1, 2, J1, J2, J3, Ja) € € N E5. Without loss of generality, assume that 7
is different than all the other indices (otherwise, this statement holds with js or j3 or
ja). Then,

1)
L [<F§‘71l,jz,i1> (Féjyz;zz)] =L [(52073'1,@'1}]%'15”0,1'27%'1) (520,33,22}11'26”044#’2)}

(:) E [ [ n0,71,i1 ‘ WlNWZQ?VijW W ] (Hh(;no,jz,h) (5T 225710,]'4,1'2)]

J37 10,J3,12
o (E.15)
where (1) holds by definition of F]l iy and Fé; iui, SinCE J1 7 jo and js # ja, (2) holds
by LIE, and (3) holds by part (a) of Assumption 3.2. Note that this argument can be

used whenever one j, is different than all the other indices, for some s € {1,2,3,4}.

Now take (i1,12,J1, 72,73, J1) € €N E4. Suppose {a,b,c,d} are four different in-
dices, then there are two possible distributions for the 6-tuples: (i) two pairs, e.g.,
(a,a,b,b,c,d), or (ii) one triple, e.g., (a,a,a,b,c,d). Notice that for 6-tuples in (ii),
there exists one jy different than all the other indices, for some s € {1,2,3,4}. In
this case, £ [(F] ) mh) (Fé; i u)] equals zero due to the argument described above.

Therefore, in what follows, I consider only 6-tuples in (i), specifically, the cases where

Js appears in a pair for all s = 1,2, 3, 4.

e Case 1: j1 = J3, Jo = Ja, and i1 # i5. Then,

B [(Féfll,jzil) <F§ﬁ7j4,i2>i| =FE [(520,j17i1Hi15”0’j27i1) (6;07j1,i2Hi25n0,j27i2>} (E16)

To compute the number of indices (i1, 12, J1,J2,J1,J2) € € in this case, recall
that iy € Zy, and iy € Zy,, therefore, there are two situations (i) ky = ks or
(ii) k1 # ko. For the first situation, i; can take n values, iy can take ng — 1
values (since it is different than i; but is in the same fold Z), and j; and j
can take ng and ng — 1 values (since they are different but not in Z;). That is
n(ng—1)ng(ng—1) combinations. For the second situation, i; can take n values,
19 can take ng values, then j; and j, take values in all the data except into the
two folds that contain iy and iy (since ji, jo & Zy, and jy = Jjs, jo = ja & Zy,),

that is (no—ny)(no—nk—1). That is n(n—ng)(ne—ng)(no—ng—1) combinations.
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Therefore, the total number of indices is equal to

3<K2—3K+3

o\ ke 2ng " + n52> (E.17)

e Case 2: j1 = ju, Jo = J3, and iy # i5. Then,

B [(Péjll,jmil) (F%sz,iz)] =L [(57—;0,]'1,11HZ'15"0J271'1) (5;0,j1,i2Hi25n0aj27i2)} :

The number of indices (i1, 2, j1, j2, j1,J2) € € in this case is exactly the same

as in the previous case, which is presented in (E.17).

Finally, note that

S B[(T) (Thn)]| < 30t wCa/Comy 2 an - (B.18)

which follows by triangular inequality, (E.12), and by using that the number of el-
ements in <3 is lower or equal to 3°n3 (for each 3-tuple (a,b,c) € [n]?, consider
the functions from the positions {1,2,3,4,5,6} into the possible values {a, b, c}, the

number of all these functions is 3%, while the number of 3-tuple is n?).

In what follows, I use the preliminary findings to calculate I up to an error of

size o(n=¢),

—1 —4p1—2 Ll L
Ihb=n Ngy ot Z b [(Fﬁ,jw&) <Fj3,j4,i2>}

1) 1 —dp—2 1l 1
=n Ny o Z L |:<Fj17j2,i1> (Fjs,]&,iz)]

1 —dpy—2 1l 1l
+tnong ! Z L [(thjz,h) (Fj37j4,i2)]

K
Dy S () ()] - out )

o (K —1)

4) 1-4 K2 —3K+3 —¢
= Ny e (—(K—1)2 Gs+o(n™%),
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where (1) holds by the derivations in (E.14) and (E.15), (2) holds by (E.18), (3)
holds by (E.16) that computes the expected value and (E.17) that calculates the
number of indices to consider, and (4) holds by definition of G in (3.2), Assump-
tion A.1, n/2 < ng < n, and since 6¢1 —1 > (. This completes the proof of Claim 1.2.

Claim 1.3: I3 = o(n™°). First, claim 1.1 implies I; is o(n™¢). Second, claim 1.2 im-
plies Iy is O(n~¢) since 41 —1 > (. Finally, then I3 is o(n~¢) due to Cauchy-Schwartz
( |13| < |I1|*/?|I5]*/?). This completes the proof of Claim 1.3.

Claim 2: E[I},] = o(n™¢). Consider the following notation,

0 =0 Hibngsni — Eb) o iHibpyinil s

J1,J2,% 10,J1,% n0,Jj1,t

where by construction E[F]1 i) = 0. Denote l;noﬂ- = Elbn,ji | Xi]. Note that if
J1 # jo, then

D3 = Vo b — Bl Hibag.]
Furthermore,

ng B |03, | < 0Co/Com )7, (E19)

which follows by C-S, part (e) of Assumption 3.1, and part (b.4) of Assumption 3.2,
with 62 = 02(1 + M1/4/C()). AIld, if jl 7é jg,

ng ' E [yrbb |2] < (pCa/Coyn2 =20 (E.20)

Ji.J2,%

which holds by C-S, part (e) of Assumption 3.1, and part (b.1) of Assumption 3.2.

The previous notation can be used to rewrite I, as follows

_ 2
E[I}) = E || n"? Z Do Y Y T
i k=1 i€y 1¢Ly j2¢ Tk
B K
_ 5 _I/QZZ”_QW PN 23S g2t ST ONT N 1) £ )
i k=1 1i€Ty ¢TIy, k=14€Zy NELk 2¢ Tk
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:[1—|—[2+213

where
- 2
K
_ 2092 bb
L=E||n? Z Z ny Z Uy
k=1 icTy 32Ty
- 2
K
_ ~1/2 —2py—2 b,b ) :
L=E||n Z Z o Z Z Uil {in 7 J2}
L k=1 i€Zy, J1¢Zy, j2 &Ly
[ K K
_ —1/2 —2pp—2 bb ~1/2 —2p9—2 bb ) .
L=E||n Z Z o Z L5 nin n LN Fjg,j4,i[{]3 # Ja}
| k1=1 ’iEZkl J1 ¢Ik1 ko=1 iQEZkQ j3¢_’[k2 j4¢Ik2

In what follows, I show that I} = o(n™%), I, = o(n™%), and I3 = o(n™°), which is

sufficient to complete the proof of Claim 2.

Claim 2.1: I; = o(n™¢). Consider the following expansion,

K K
1 —dpa—d bb bb
[1 =N Ny E : E : § : § : E : 2 : B Fjl,jl,ilrjz,jz,h

k1=1ko=1101€Ty, 12€Tx, j1¢Tr, jo Lk,

—1, —4pa—4 bb bb
=n Ny - Z K [thjl,ilrjmjz,iz] )
(41,i2,41,J2)€E
where £ = {(i17i27j17j2) € [n]4 SIS Ik177:2 € Ikzajl ¢ Ik17j2 ¢ Ikwkl € [K]7k2 S
[K]}, with [n] denoting {1,...,n}. Let & C [n]* be the subset of indices with distinct

entries. Let £<3 C [n]? be the subset of indices with at most three distinct entries.

Now, take (i1, s, j1,7J2) € €N Ey. Tt follows that

BT T ] =0

J1,J1,817 J2,72,82

since T%? and I'%°

i niasia L€ zero mean independent random variables.

Now, take (iy, iz, j1,J2) € €N E<3. Consider the following derivation,

—4
n ©p2

0 S (pé2/00)ng(1_2@1)7n0 ’

E [Fb,b b }

J1,J1,817 j2,J2,i2
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which follows by C-S and (E.19).

Therefore,

gt Y BTl | S 7 G Con

J1,J1,817 j2,J2,i2
(i1,02,41,J2) EENE<3

which uses that £<3 has at most 3*n® elements (as in the proof of claim 1.1).

Using these two preliminary results, it follows that
Il = o(nk&"l) s

since 7,, = o(1) and n/2 < ny < n. This completes the proof of Claim 2.2 since
61 — 1> C

Claim 2.2: Iy = o(n=%). Consider the following expansion,

K K
I = n_lna4¢2_4 Z Z Z Z Z Z E [F?;lijz,hrzijzhiz I{jl 7& ]2}1{]3 7& j4}

k1=141€Ty, ko=1142€TLy, j1,j2¢ Lk, J3:J4%Lky

1 —dgpe—4 Z bb bb
=N Ny E Fj17j27i1rj3,j47i2 )

where & = {(i1, 2, J1, J2, J3, ja) € [n]® 1 i1 € Ty, in € Tiys 1, J2 & Tiys J3sJa & Tiys 1 7
J2;J3 # Ja; k1, ke € [K]}. Let & C [n]° be the subset of indices with distinct entries.
Let & C [n]® be the subset of indices with exactly five distinct entries, meaning that
two entries are identical while the remaining entries are distinct. Let & C [n]® be the
subset of indices with exactly four distinct entries. Let E<3 C [n]® be the subset of
indices with at most three distinct entries. Note that [n]® = E<3 U &4 U E U .

b,b b,b
Fjl,jz,il J3,J4,t2

Note that for all (i, s, j1, j2, j3,J4) € &, it follows E
b,b b,b
r and I’

J1,J2,5%1 J3.J4,t2

] = 0 since

are independent zero mean random variables.

Now, take (i1, 2, j1, Jo, J3,J4) € € N E;5. There are three possible cases:

e Case 1: j; = j, for some s € {1,2} and r € {3,4}. Since all the sub-cases are
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similar, without loss of generality, take (s,r) = (1,3). It follows that

1) ~ ~
—2 byb bb ) )
ng 2B [thjz,hrj&jzx,iz] < ‘E [(no LPanO’jl’il)THilbno,il (no @anoﬂjl’il)Tthno’iQ]
+ TLSQW E [B;Lro,ilHili)nMI] E [BIOJQHZAQB”O@]
(2) . - ~ o
< CFE [!(no %bnozﬂ‘hh)\ﬂbnoﬂ-l‘?} o seriing

INS
o

—p2 2 2]1/2 1 NEE —2p2 A&
E B |00 " buyiuin) | X '] B gl g2 Cty

—
N

) -
M2 422G,

IN

= 1-2
Cny "1,

where (1) holds by triangular inequality, LIE and definition of F?sz,il and
F?;JAJQ when jl = j3 al’lfi (il,ig,jl,jg,jg,jzl) e &N 55, (2) holds by part (e)
of Assumption 3.1 with C' as a function of (Cy, Cy, M, p) and part (b.3) of As-
sumption 3.2 with C-S, (3) holds by LIE and C-S, and (4) holds by parts (b.1)

and (b.3) of Assumption 3.2.

e Case 2: j; = iy for some s € {1,2} or j, = i; for some r € {3,4}. Since all the

sub-cases are similar, take s = 1. It follows that

1) - - -
- byb b,b -
nO w2 E [Fjl,jg,ilrjg,j4,j1:| S )E |:(n0 g02b”Oajlﬂl)—l—[{ilbn()vilb;’bl—o,jl[{.7.1l)"'507‘7'1:|
+ n(;m E |:b7—1ro7i1HilbnO,i1i| E |:b;7,ro,j1Hj1bn07jl:|
(2

A Rz 41/4 7 Nk —p2 A
< CE [Ing%buy a1 B [ |'] +ng#2Cty
@ .
< OBV 42 CM

where (1) holds by triangular inequality, LIE, and definition of F?fjwd and
I‘?imm when j; = iy afld (1,19, J1, 72, J3, Ja) € €N Es; (2) holds by part (e) of
Assumption 3.1 with C as a function of (Cy, Cy, M, p), C-S, and part (b.3) of

Assumption 3.2 with C-S; (3) holds by parts (b.3) and (b.4) of Assumption 3.2.

o Case 3: i; = i9. It follows that

W) -
< ‘E |:bn0,i1Hi1bn07ilbno,i1Hi1b"07il]

J1,J2,817 J3,Ja,01

‘E [Fb,b o }

—|— ‘E |:BT—I,FO,’L'1H7;1 g7’L0,’L'1i| E [620,1'1

H’il 6n0,i1i|
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2 -

< 2C'M;
where (1) holds by triangular inequality, LIE, and definition of Fglbﬂ ;, and
F?;lfjmz when i; = iy and (i1, t2, J1, J2, J3, Ja) € € N E5; and (2) holds by part (e)

of Assumption 3.1 with C' as a function of (Cy, Ca, M, p), C-S, and part (b.3) of
Assumption 3.2 with C-S.

Therefore, for the indices on £ N &, it follows that

—1 —dpy—4 b,b b,b 1) —92p— _ _ _
n 1n0 e Z E [Fh dovin L g da, 12] - O(nl 2o 2¢2)+0(n3/4 3e1/2 SW) +O(n 4802)

@ o(n=°) (E.21)

where (1) holds since the number of elements of £ N & is lower than 551° and the
preliminary findings in cases 1, 2, and 3, and (2) holds since 2p; + 29y — 1 > @1 +
02— 1/2> ¢, 301/24 302 —3/4 > o1+ @2 — 1/2 > (, and 4y > 4o — 1> (.

Now, take (iy, 42,1, j2, j3,J4) € €N E4. There are three cases.

e Case 1: j; = j, and jo = j, for {r,s} = {3,4}. Without loss of generality,
consider (s,r) = (3,4). It follows
—4pa

L) J1,J2,817 j1,J2,i2

E [be b ]

1) — o — (o —p2 —¥2
< |E [(nocp bno J1s i1>THi1 (n[)(p bno J25 i1)(n0¢ bno,jl,i2>THi2<n[)(p bnodéﬂé)”
E [bT Hill;no,il] E |:bT Hizgnoiz}

—4dp2
+ L) 10,11 10,12

(2) . _ _ — — 4y A
< CE [|n0 10,J1, 11)””0@267107]'27%'1””0 <p2bn07j1,i2||n0 sDzbno,jmizﬂ +n0 SOQCMl

3) = — - _ _
= CE[ Un mbﬂojhh)”” mbn07j1,i2| |XZ17X } “n mbno,h 11||n mbnojz,izl | XH?X ”

4 . . 0o —4po A

< E[ Un v banl i1 |2 | X ] E[ v bﬂo j2,i2‘2 ’ XZQH + Ny v CMl

2ep(E E [|ng #*b WX, > E [|ng #*b 2 X,]° el
> g " Ong,j1,i1 Z1 Ty " Ong,ja,i2 ia L) 1
(6) ~

< Cn 31 2901)Tn0 +ng tﬂzcle
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where (1) holds by triangular inequality, LIE, and definition of . and

J1,J25t1

r%. . when J1 =173, jo = ja and (i1, @2, j1, ja, j3, Ja) € €N Es; (2) holds by part

J3 J4 12
(e) of Assumption 3.1 with C' as a function of (Cy, Cy, M, p), C-S, and part (b.3)
of Assumption 3.2 with C-S; (3) holds by LIE; (4) and (5) holds by C-S; and
(6) holds by part (b.1) of Assumption 3.2.

e Case 2: j; = j, for s € {3,4} and j, = i5. Without loss of generality, s = 3. Tt

follows

1) -
—3p2 —p2 T —p2 —p2 T
L) it L guasia || S ‘E [(no bng,juin) Hiy (19 bno,j27i1>(n0 bno,j17j2) szbnova)

E [PW b ]

-3 7 7
+ny i [b; leilbno,h] [b;zro JJ2 sz bno,jz}
3) - ~
S C 9(1— 2‘{71)/47_354]\411/4 + Cna3902M1

where (1) holds by triangular inequality, LIE, and definition of e’ and

J1,J2501

Fb~’b- . when jl = j3, jQ =19 and (il,ig,jl,jQ,jg,j4) cén 55; and (2) holds by

73,7452

C-S and parts (b.3) and (b.4) of Assumption 3.2.

e Case 3: j; = j, for s € {3,4} and i; = i5. Without loss of generality, consider
s = 3. It follows that

—20p9

1) - -
— T — T
LY < ‘E [(no Lmbno,jl,il) Hilbno,h(no gDanoJl,il) Hilbno,il]

E [be rbb ]

J1,J2,017 J1,J4,81

—2
+ n P2

E[bT H, bnoil]E[bT H, bnm]

n0,%1 n0,t1

—
N

) )
< Cnl 2017, M? 4 ng*2C M,

where (1) holds by triangular inequality, LIE and definition of %", and

Ji,J2,81

%" when j; = j; and i; = is and (11,12, J1, J2, 73, Ja) € €N Ey; and (2) holds

J3,J4,t2

by the same derivations presented in Case 1 when (iy, s, j1, j2, j3, j4) € € N Es;

therefore, it is omitted.

Therefore, for the indices on €& N &y, it follows that

—1 —dpy—4 b,b b,b 1) _ _ 9 —
n 1no - Z E [Fh g2, Z1F]3]4 12] = o(n - 4%)"'_0( 5/4=51/2 ?2)+0(n 2 2<p2>

@ o(n™°) (E.22)
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where (1) holds since the number of elements of £ N &, is lower than 45t and the
preliminary findings in cases 1, 2, and 3; and (2) holds since 41 — 1 > (, 9p1/2 +
2= 5/4> o1+ 92— 1/2> ¢, and 201 + 202 > o1+ 2 —1/2 > (.

Now, take (i1, 12, j1,J2,73,74) € € N E<g. Similar to the proof of Claim 2.1 but
using (E.20) instead of (E.19), it follows that

gttt S B [r”vb e 1| = o(n=) (E.23)

J1,J15817 J2,J2,02
(i1,92,51,j2)€EENE<3

Finally, using (E.21), (E.22), and (E.23), it follows that I, = o(n™¢). This com-
pletes the proof of Claim 2.2.

Claim 2.3: I3 = o(n™°). This result is a consequence of C-S and Claims 2.1 and 2.2.

Claim 3: E[I},)] = o(n™¢). Consider the following notation,

kb

J1,J2,8

T
=0 ‘Hibno,jzﬂ'

n0,J1,%

where it holds E[T':’ . ] = 0 due to part (a) of Assumption 3.2.

jl 7j2 7i
Furthermore,

nasz [’Fz;b

J1,J2,t

2| < CngtEn (B-24)

which follows by C-S, part (e) of Assumption 3.1, and parts (b.2) and (b.4) of As-
sumption 3.2, with C function of (Cay M, Co,p).

The previous notation can be used to rewrite E[I?] as follows

B 2

K

— B n-1/2 Z Z ng@1—<p2—3/2 Z Z F?lb,jQ,i
i k=1 i€y J1€Ty jo ¢ Ty
_ . K«

—F | [ n V2 Z Z ng“’l‘”‘?’/z Z Té? +n 12 Z Z naw1—<p2—3/2 Z F?ﬁj%il{jl # Ja}
i k=1 i€T; ¢ T k=11i€Ty J1.J2¢ Lk

=1+ 1)+ 2]
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where

_ 2
I,=F —1/22271*901 p2— 3/QZFJJ1
| k=1 i€Zy JETy, 7
- 2
L,=E 71/2227{@01 p2—3/2 Z Fgmg, {j1 #]é}
i k=1 i€T; J1,J2 €Ty
[ K
I, = E /2 Z Z nﬂm p2—3/2 Z sz n-1/2 Z Z namﬂori%/? Z 31’127 {]1 £ j2}
i k=1 icT;, ¢ T k=114€T J1,72 ¢k

In what follows, I show that I} = o(n™%), I, = o(n™%), and I3 = o(n™°), which is

sufficient to complete the proof of Claim 2.

Claim 8.1: I} = o(n=%). Consider the following expansion,

—1 72@1 2¢p2—3 E § E 2 2 Lb lb
[1 n FJl:]lﬂl J2, J2,l2] :

k1,ko=1i1€Ly, 11€1k; j1¢Lk, jo¢ Lk,

Now, E [Félb i llf‘éf’h i) is calculated under the two possible cases based on the

indices (i1, ji, 12, J2)-

e Case 1: (i1,71) and (12, J2) have no element in common. Then E[F;f’ﬂﬂlf‘;bm’m]

is zero since I'%? and %P are independent zero mean random variables.
]1 ]1 11 .72 J2 72

e Case 2: (i1,71) and (ig, j2) have at least one element in common. In this case,
there are at most 3*n3 possible indices. Moreover, due to (E.24) and C-S, it

follows

J1,J1,817 J2.J2,%2
Therefore,
-1, —2p1—3q94, 3~ 2(1-2¢1) _1/2 5 r1/2
|| <n” 'ng 3*n°Cng T "M

= o)
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which is sufficient to conclude that I; is o(n*C) since 6y — 1 > 47 — 1 > (. This
completes the proof of Claim 3.1.

Claim 3.2: I, = o(n™°). Consider the following expansion,

]2 =n Z Z Z n_2501 see Z Z |: 71,72, ]3,]4 %2} ]{]1 7&]2}1{]3 7&]4}

k1ko=111€Ty, i2€T}, J1,92¢ Tk J3,4¢Lky

Now, E [Félb DMFé: i 12] is calculated under four possible cases based on the indices.

_ o : Lb Lb '
e Case 1: all indices are different. Then , [Fﬂ e b 12] equals zero since

Lb Lb :
Iy and I'20. o are independent zero mean random variables.

e Case 2: there are exactly five different indices. Then, consider the four different

sub-cases:

- jl = j37 then

(E[r”’ T | =

J1,J2,817 J1,J4,%2

B[00, 1.1 b s sy b
CE I8, 1m0 iz P
CE |E (100 | X onoin ]

O

(1)

IN

IN

which holds by C-S, LIE, and part (b.1) and (b.3) of Assumption 3.2.
Since there are at most 5°n° terms, it follows these terms contributed to
I, with O(n'=2#172¢2) which is larger than o(n=¢) since 2p; + 201 — 1 >
01402 —1/2 > C.

— J1 = Ja, then
Lb Lb T T
L thjz,ilrjs,jhiz] [5%,]1721 31 bnovhv“éno ,J3,82 Z b”()vjlvi?]

[ [nOJI i1 ‘XJ17VI/’L17W127W]27W }Hzlb j '5T ia.q Hl’zbnodl,iz}

10,)2,%1 V' ng,J3,i2
=0 ,

which holds due to part (a) of Assumption 3.2.
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- jl = ig, then

J1,J25817 J3,J4,J1 n0,J1,%1 132581 %ng,53,51 Jlb”07j4»jl]

Wlu lev WJZ’ VVM} H bn07j47j1]

B0 T s | = B (50 v Hisbroini O,
=E [671—0711 11Hil bn07j2,i1

=0.

|: 10,73,J1 ‘

— 11 = 19, then j3 is different than all and the previous argument used for

Jj1 = iy applies and implies

E[F”’ kb —0

J1,J2,81 7 J3,J4,%2

e Case 3: there are exactly four different indices. Then

— if jo or j4 is different than all, then

(E[F“’ O | = ‘E[ Hib

J1,J2,817 J3,J4,52

Hiybn |

no,J1,81 7" n0,i1 no,]g,lg

= CE |:|5n0,j1,i1||l~)n0,i1 | |5n01j3,i2||6n0,i2 |i|
=0(1)

which holds by C-S, LIE, and parts (b.1) and (b.3) of Assumption 3.2.
Since there are at most 4°n* terms, it follows these terms, in this case,
contributed to I, with O(n=2¥17%%2) which is o(n~%) since 2p; + 2y >
4(,01 — 1.

— if j1 = js and j, = j3, then
E T T N =FE 00 5,0 Hitbngjair O joria Hisbno s in)
J1,J25t1 g2t | n0,j1,i1 * 141 Y10,52,81 Yng,j2,i0 112 ¥n0,71,i2

[ [ Nn0,J1,91 | X]17m1?W]27W ]Hl bno j27l157—z|—0 ,j2,82 Z bn07j17i2]

=0,

which follows by part (a) of Assumption 3.2.

— if jg = jg and il = j4, then

BT T }—E[M Hiy o is O i HiaDro i o

J1,J2,817 J2,81,02 n0,J1,81 " 7117 N0,J2,1 " ng,j2,52 7 12
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BlE [n0]111 |XJ17VV117W Wi, | Hi, b or

J2» 10,J2,%1 Yng,j2,i2 Z bno,il,iz]
=0,

which follows by part (a) of Assumption 3.2.
— if j1 = j3 and jo = js, then

—2p9
L)

E [rlzb. Tkt }

J1,725217 J1,J2,02

- ‘ [577,0 ,J1,%1 Z n() ,J2,81 5710 J1, ngZansz,lz] |

IN

éE [E Uano’jl’i1|2 ’ Xll] Un_SOanO j27i1‘2 ’ Xn”

~ 2 1/2 — (g 2
CE [E U(sno:jlﬂ'l‘z ’ XiJ :| E [E [lnow bno,jz,i1‘2 ’ Xil} :|
é 1/2 1 2901)7_1/2

no

1/2

IN

IA

which holds due to C-S, LIE, part (b.1) of Assumption 3.2. Since there are
at most 4°n? terms, it follows these terms contributed to I with o(n'=4¢1),
which is o(n~¢) since 4p; — 1 > (.

— J1 =1z and j; = jy, then

B8 T ] = B (5 gui Hisbro a0

J1,J2,817 J3,J2,01 n0,J1,01 10,7241 “ng,j3,51 Jl bnon,J’l]
T
= E[5n0 1,01 Hilbno,j%il [ n0,J3,J1 | XJ37 Wllv WJ27 W ]H bno;jmjl]
=0 ,
which holds due to part (a) of Assumption 3.2.

e Case 4: there are exactly three different indices. All the terms in this case

contributed to I with o(n=¢) by a similar argument as Case 2 in the proof of
Claim 3.1.

All the previous cases imply that I, = o(n™¢), which completes the proof of Claim
3.2.

Claim 3.3: I3 = o(n~°). This result is a consequence of C-S and Claims 3.1 and 3.2.

Part 3: It follows by Cauchy-Schwartz, using part 2 of this proposition and part 1
of Proposition C.2.
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Part 4: It follows by Cauchy-Schwartz, using part 2 of this proposition and part 2
of Proposition C.3. n

E.7 Proof of Proposition C.5

Proof. For i € I, denote A; = A? + Al where

A _ na@l -1/2 25%]2 ’

J¢Li,

w2, —1 E
nO bn07j7i ?

T¢Ik,

Here, 6, = 0no(W;, X;) and by, ;i = by (X, X;), and 6,, and b, are functions
satisfying Assumption 3.2.

Part 1: Consider the following decomposition

(”1/2 2": mil/J0> (”1/2 Xn:(Aiz)Tanmiz/J())]

i1=1 i9=1

E[E* an] =F

Lt ST [ ) (B, + AL Oy )]

= *ZZZ [(mi, [ Jo) (AL)T0ymiy [ Jo)] + E [(may ) To) ((A%)Tymay /)]

:Il+127

where (1) holds since A; = Al + A?. Claim 1.1 below shows that I; = 0, while Claim
1.2 shows I, = (G} /2)ny ¥* + o(n=¥2).

Claim 1: I = 0. To see this, consider the following derivations

n K

L=n" Z Z Z mn/JO ( )Tanmiz/‘]o)}

11=1 k=1 i9€Z}
n K

SLED 3D DD DES RS DY ACIVE ALY

11=1 k=1 i2€Z} j¢Ik
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n K
D tSONTS  ng g ST E [(mi /J0) E (6] | Ways W] 9gmay/ Jo]

i1=1 k=1 i2€T} T
(3) =
_ — 1 2
S ) ) ngin / > E[(my)Jo) by ;0 E [0gmiy ) To | Xy, W]
k=1 i2€Zy J¢Ty,

where (1) holds by definition of AL, (2) holds by the law of iterative expectations, (3)
holds since E [0, ;. | Wi, Wi,| = 0 when iy # j due to part (a) of Assumption 3.2

and by the law of iterative expectations, and (4) holds by the Neyman orthogonality
condition implied by part (b) of Assumption 3.1.

Claim 2: Iy = (GL/2)ny?* + o(n=%2). To see this, consider the following derivations

3
=

L=n""Y"3"3"E[(mi/Jo) (&%) 0ymi,/ Jo)]

11=1 k=1 i2€Z}

n K
(2 n! ZZ Z n_@zno Z E mh/‘]o) no]ﬁa mZQ/JO}
i1=1 k=1 i2€T; JETk
n K
@n_lzz Z nO ZE mu/‘]O) 10,7,12 [aﬁm’@/‘]o | Xi?’wil’XjH
11=1 k=1 i2€Z} 7¢Iy
) K
: n_l Z Z TL_SDQ 61 Z E ng/J(J) [ Nn0,7,12 ’ WlQ] anmiQ/JO]
k=1 ia€Z} ]¢Ik

D 1572 [ (1o By (X Oy ]

4)  —p — 9
= ny?2(Gy/2) + o(ng*?) |

where (1) holds by definition of A% (2) holds by the law of iterative expectations,
(3) holds since E[0,mi,/Jo | Xiy, Wiy, X;] = 0 when i3 # iy due to the Neyman
orthogonality condition implied by part (b) of Assumption 3.1 and the law of itera-
tive expectations, (4) holds by definitions of b, ; = E[bn,;i | X;] which is equal to

E by ;i | Wi], and (5) holds by definition of G} in (A-7) and Assumption A.1.
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Part 2: Consider the following decomposition,

<n_1/2 Z mz‘l/J0> (n_1/2 Z(Am)THw (Ah))

E[T Tk =E

i1:1 i2:1
=0L+4+2,+ I3
where

L=E[{n™'?> my /0y | {02 (AL)TH,(AL)

L i1=1 i9=1 J
bm | (02 Y ) (2 S AL

L i1=1 i9=1 J
I3 =F ’I”Lil/Q Z mil/JO nil/z Z(AZ)THW(AZ)

L i1=1 i9=1 J

In what follows, I show that I; = o(n™°), I, = (GYb/Q)n(l)ﬂ_w_so2 + o(n™¢), and
I3 = o(n™°).

Claim 1: I, = o(n~¢). Consider the following derivations,

n K
]1 (—i) -1 ZZ Z ng 24'01 _1 Z Z mz1/<]0 ( n]17i2>THi2<5n,jz,i2>>]
i1=1 k=1 i2€T}, 7¢Iy jo ¢TIy
K
(:) nt Z Z n52 ! Z Z mz/JO n]l,i)THi(énJé:i)]
k=1 i€} ELk, 2¢ Tk
nt Z D ong gt Y E[(myy /o) Bngii) HiGn )]
k=1 14€T; J1¢Tk j2 ¢ Tk
K
—i—rflzZnaQ ' Z Z maz/JO nJ17i>THi(5nJ2,i)}
k=1 i€Zy ELk 2¢ Tk
K
® -1 Z Z ng > ng! Z E [(mi/Jo) (0nji) " Hi(0n )]
k=1 ieIk J¢Lk
Z Z n_zwl _1 Z E mj/JO n],i)THi<5n,j,i)}
k=1 i€Zy ]%Ik
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= ng P E [(mi/ Jo) (6ni)  Hi(0ngi)] + 2ng 7" E [(my/ Jo) (6nji) " Hi(0ngi)]
o)

where (1) holds by definition of AL, (2) holds since i; € {is, j1, j»} implies

E [(mll/JO) ((5n,j1,i2)THi2 (57173'2,1'2))} =0,

which follows since m;, is a zero mean random variable independent of W;,, W;, and
Wi,, (3) holds since j; # j, implies

E [(mi/Jo) B jui) Hi(0njp0)] =0
E [(mj,/Jo) (Onjui) " Hi(Onjoi)] =
E [(mj,/Jo) (Onjui) " Hi(Bnjoi)] =0,

)

which follows by the law of iterative expectations and noting E[6, ;,; | Wi, W;,] =0

and E[0,j,; | Wi,W,,] = 0 (due to part (a) of Assumption 3.2), and (4) holds by

Holder’s inequality, part (e) of Assumption 3.1, and part (a) of Assumption 3.2.

Claim 2: I, = (Gy/2)ng> 7% + o(n=°). Consider the following derivations,

-1 ZZ Z g GrTeR _3/2 Z Z mzl/JO ( n]l,iz)THiz(bn07j27i2))}
i1=1 k=1 i2€Z} J1€Ty j2¢ Tk
K
S YN ng N B/ o) () Hilbag )]
k=1 i€} J1,J2¢ Lk

K
+n”! Z Z ng ¥ P Z E [(mj,/Jo) (6nji) Hi(bng jpi) | T{i1 # jo}

k=1 i€} J1:52¢ Lk

Tty Y ng ¥ e > E[(my/ o) (0ngii) " Hilbugjui)] I{j1 # o}

k=1 i€} J1,52¢L
- —p1—p2—3/2
+n Z Z e / Z E [(mj/J0> <5n,j,i>THi(bno,j,i)}
k=1 icTy, T
3) K
S0 g YT B [(mif Jo) Ongi) T Hilbuos)]
k=1 icTy, T
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0 TS T N B (/o) () il )| T # 52)

k=1 i€T} 31,524 T,
K
- —p1—p2—3/2
+n” Z Z T ey Z E [(mj/J(J) <5n,j,i>THi(bno,j,i)}
k=1 i€y ]ézk

D gty [(mjl/Jo) (5n,jl,i)THi(B"07i)}
. natm*w*l/?E [(mjl/JO) (5n7j17i)THi(5no,i)]
+ na¢1*1/2E‘ [(m]/JO) ((Sn’j’i)TH@'(na‘Pano,j:i)]

2 (Go/2)ng* 7 o0 ™)
where (1) holds by definition of Al ; and A?;, (2) holds since iy ¢ {is, j1, jo} implies

E [(mi,/Jo) ((Ongusia) " Hia (bno,jasis))]

by using that m;, is zero mean and independent of W;,, W; , and Wj,,

(3) holds
by definition of bn,; = Elbnyji | Xi], and since j; # j, and the law of iterative

expectations implies
(me/Jo) B [(0ngii) " | Wis Wi, | Hig (bng i) = 0

for £ =i, jo by using part (a) of Assumption 3.2, (4) holds by the law of the iterative

expectations,

(mi/Jo) E [(6n3.0) " | Wi, X;] Hi(bngji) =0,

and by parts (a) of Assumption 3.2, and (5) holds by definition of G} in (A-6) and

Assumption A.1 and because

ng# T V2E [(m) Jo) (Ongi) " Hi(ng by )]
< Cng# "2 Ellmy/ Jo 1 160,54l EllIng #bpg 5]
— O(n~"72) 5 O(1) x O(ng/* %) x o(ni/**1/?)

— 0(n1/273§01)

where the inequality uses part (d) of Assumption 3.1 and Cauchy-Schwartz inequality,
and the equalities follows by part (b) of Assumption 3.2. The proof of the claim is
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completed since ¢ < 1/2 — 3y, whenever ¢; < 1/2.

Claim 3: I3 = o(n~¢). Consider the following derivations,

n K
L _ _
]4 =n ' Z Z Z ng 2@2 2 Z Z mu/JO ( no jl,i?)THi2<bn07j2,i2))j|
11=1 k=1 ig€Z} LTy, j2¢ Tk
K
2 _ 2
=n ' Z Zno e Z L [(ml/‘]o) (bno,jhi)THZ’(bno,jQ,i)]
k=1 i€y J1,J2¢ Lk,
K
_122 0 7" Z E mJl/JO (nojw) ( no]zZ)} I{jl %]2}
k=1 i€y J1,52¢ Ty
K
w0 N B [,/ 90) (g ) Hilbng )] T # o}
k=1 1€}, J1,72¢ Lk,
+ n_l Z Z n_QSDQ ’ Z E mJ/JO no s Z) (bno,j,i)}
k=1 i€y ]¢_’ka
K
3 _ 90—
DSOS N B (mif o) (o) Hilbu)| T # o}
k=1 i€l J1,72¢Ty
+n! Z Z gy Z E [(mi/ Jo) (ng 7 bng,3.5) " Hi(ng 7 bng )]
k=1 ZEIk J%Zk
K
nY N g™ Y B | (my /) (05 b ) Hilbas)| 101 # g2
k=1 1€}, J1,J2€T
K
T Y g Y B (o) (o) Hi(ng b )| i # 2}
k=11i€Ty J1,92 ¢k
K
0ty Y ng Y B [(my)Jo) (g bug i) THi1g by i)
k=1 1€y ]¢Ik
©) O(n=292) + o(n'/>=301) 1 o(nl/2=917%2) 4 o(n/2~3¢1)
2 o(n™¢).

where (1) holds by definition of A} ;, (2) holds since iy ¢ {j1, j2, %2} implies

E [(ma, /Jo) (b i) " (02miy /(2J6)) (bnjais))] =0
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by using that m;, is zero mean and independent of W,, W, , and Wj,; (3) holds by the
law of iterative expectations; (4) holds by parts (b) and (c) of Assumption 3.2, parts
(c) and (e) of Assumption 3.1, part (b.1) of Assumption 3.2, and Holder’s inequality;

and (5) holds since ¢ < 1/2 — 3¢ and ¢ < 2p9 (because p; < 1/2 and @1 < ¢y). O

E.8 Proof of Lemma C.1

Proof. 1t is sufficient to show the result for the case when ¢,, and b,, are real-
valued functions since for any = = (z1,...,2,) € R? it holds ||z|[* = (320_, 22)* <
p>_0_, |ze|*. In the proof, I use that El(> g1, Z)Y < noE|[Z}] + 3nkE[Z2)?, which

holds for zero mean i.i.d. random variables Z,.

Part 1: Fix i € Z;, and denote Z; = 6,,(Wy, X;) for any ¢ ¢ Z;. Conditional on X,
it holds that {Z, : ¢ ¢ 7.} is a zero mean i.i.d. sequence of random variables due to

part (a) of Assumption 3.2. Therefore,

E|ng'> ng® Z* | Xi| <ng® ™ (noE[Z) | Xi] + 303 B[22 | Xi]?)
2

Using the previous inequality and the law of iterative expectations, it follows

E |Ing"?Y ng? Zi*| < ng™ (ng' E[Z}] + 3E[E[Z} | Xi]])
04T,

(1)
< ng*t (ng ' M,y +3M;)

where (1) holds by parts (b.1) and (b.2) of Assumption 3.2, and the definition of Z,.
Taking C' > 4M; completes the proof of part 1.

Part 2: Fix i € T; and denote Z; = ng #* (b, (X, X;) — by (X;)) for any £ ¢ ., where
by (X;) = Elbng(Xe, X;) | X;]. As in part 1, {Z, : £ ¢ T} conditional on X; are zero

mean i.i.d. random variables. Therefore,

- (1) -
E ([ng" > (Ze+ng % by X)) < 2°F |Ing' > Zil* | +2°E |Ing" ) ng#2bny (X5)[*
4T, ¢, (2T,
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®) oy i
< 8ny? (ng ' E[Z}] + 3E[E[Z] | XiJ’]) + 8ng " E[|by, (X:)|"]

® —4dp1 —4dp2
< 8n0 "o + 24007 T 4 80 T2 M,

where (1) holds by Loeve’s inequality (Davidson (1994, Theorem 9.28)), (2) holds
by the same arguments as in part 1, and (3) holds by part (b.1), (b.3) and (b.4) of
Assumption 3.2. Taking C' > 32 + 8M; completes the proof of part 2. O

E.9 Proof of Lemma C.2

Proof. For i € I, denote A; = A? + Al where

I~ —1/2
A; =nyg E Onojsi »

€Lk

w2 —1
ng E bng ji »

JELk

Here, 0y = 0no(W;, Xi) and by, ;i = byo(X;, X;), and 6, and b,, are functions
satisfying Assumption 3.2. In what follows, the results are proved for any given
sequence K that diverges to infinity as n diverges to infinity, which is sufficient to

guarantee the results of this lemma.

Part 1: Using Assumption 3.2, it follows
n” Z ) Opi = L+ I+ I,

where

Li=n"') (A)TO7

=1

L=n""Y (A)T o7

i=1

]3 —1 —2m1n{g01 802} Z R Tanw

and ng = (K — 1)/ K)n.
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Claim 1: I = Oy(n~V2min{ere2}) T first show that E[I;] = 0 (claim 1.1). T then
show that E[I?] = O(n~172mi{e1¢2}) (claim 1.2), which is sufficient to conclude the

claim.

Claim 1.1: E[I,] = 0. Consider the following derivations,

E[L]=n"") " E[(A)T0,47]

=1
AT AP RUSSPER)|
k= leIk
—1ZZE ANTE 907 | Xi, (W) § ¢ T)]]
k=1 i€}

where (1) holds since Al = A{(X;) is a function of X; and the data (W; : j ¢ Zj)
used to estimate 7 (+), and (2) holds by part (b) in Assumption 3.1.

Claim 1.2: E[I?] = O(n~'72?min{¢ne2}) - Recall that I use the following notation
Onoii = Ong(W;, X;) and Al = Al(X;) = ng#ny > ¢z, Ono i for i € Iy, To show

E[I?] = O(n~172min{er¥2}) - consider the following derivations,

B Qa2 3 B (8o (A) o)

i1,i9=1

)

(i n—2¢’1 —2ZE Al Tand} ) —2901 -2 Z ‘E Al Ta Zl(Aég)Tan 122”
11#12

(C) 2\ 2 (n — 1)n_1 2 2

< n02¢1 'E [(5;—()]@877 2) ] +W‘ [ n0,i2,i1 qu(s;l—on i1 12”

0

(4)

< nawl 1p [(5;0”677 z2)2] +(n_1)n_1n5(1+2¢1)E [( T i 0,7 ) } [( T o7 ) ]1/2
:no_zm_lE [((5T Oy Z)2 +(n—1)n" nO(HQW) [( o, n¢z) }

10,7, )
(<5) —2¢p1—1 1/2 —1
< ng M”"Cixp(l+(n—1)n"")

where (1) holds by definition of I, (2) holds by triangular inequality, (3) holds by
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(E.25) and (E.26) presented below, (4) holds by Cauchy-Schwartz inequality, and (5)

holds by the derivations presented next,

B |(67,1:0007)° | = B [07, 5B [(0007 (001)T) | X0, Wi] G ]
S E (67,4 [(0,07000)7) | X 6]
2 B [[nosill?] 1 x
¢ M{?Cy % p

where (1) holds since i # j, (2) holds by part (d) of Assumption 3.1 and Loeve’s
inequality (Davidson (1994, Theorem 9.28)), and (3) holds by Jensen’s inequality
(e.g., Els(W;, X)|[2"* < E[l6(W;, X)|[]"*) and part (b) of Assumption 3.2.

Note these derivations complete the proof of claim 1.2.
The previous derivations used the following claims:

E[((ADT0,0)°] = ng" Y B [6(W;, Xi)T0,076(Wy, Xi) T 9,05]  (E.25)

JETk
E [(Ail)—ran’[bfl (Aig)—ra wlz] - nO lE [5;0 19,01 7]1/):15;{0 11,82 nw’fg} I{kl # kQ} (E26>

To show (E.25), consider the following derivations.

E [(A’ZL>Taﬂ¢f(Ai)Tan¢ - nO Z Z TLQ ,J1, z 55;0 ,J2,8 771/}7:2}
71Ty j2 & Tk
Yt STE [5075, X0)T0,076(W;, X,) T 0,47]

€Lk,

where (1) holds due to the following: if j; # ja, then

[nohz ﬁqﬂfd;—oﬂz nwﬂ :E[ [nojlz | VVHVV%] 7777&1257—{032’ nwﬂ
:E[ [n031z|X} ”wfé;rojﬂ an}
=0,

where (1) holds by definition of d,, in part (a) of Assumption 3.2.
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To show (E.26), consider iy # iy where iy € Iy, and iy € Zy,, therefore

E [(A’ltl)Tan 7121 (A22>T877 = nO Z Z TLO 1, 21 ZZ1 5’;{0 ,J2,22 nw;]
J1 ¢2k1 j2¢Ik2

m _ .
- 1E [57—{0 12,81 wu n0,11,12 n¢i2] I{kl 7A kQ}

where (1) holds since k1 = ko implies js # i; and j; # i, and because the conditions
Jo # i1 Or Ji # 19 imply that £ [ o nwfléT 7,Z1f2] is zero. To see this, suppose

no,Jj2,i2 1

ja2 # 11 and consider the following derivations,

T T
[ n0,71,%1 U¢f15no ,J2,12 nwi } = [ [ n0,71,%1 771/}121 5710 J2, 12 iZ | Xil’ Wi?’ I/le’ Wj2”

—E[fﬂom (000, |X11’WZQ7WJUW} novgaviz O
- E [671—0 WJ1,81 [ |X"1] n0,72,12 U@Z)izz}
2

where (1) holds since i1 ¢ {is, j1,J2} (since i1 # jo) and (2) holds by part (b) in

Assumption 3.1. Similar derivations conclude the same for j; # is.

Claim 2: I, = O(n~Y/?min{ere2h) - Define X = {X; : 1 < i < n}. I first show
E[l; | X™] = 0. 1 then show E[IZ] < n 'E[||A%*|Cip, which is sufficient to
conclude due to Lemma C.1 that implies that E[||A%|[?] is O(n—2min{ere2}) due to
Cauchy-Schwartz.

The first part holds due to the following derivations,

E[l | XM= E |n7' ) (ADTo,47 | XM

=1
ot S(AYTE [9,47 | X™)
=1
S (A TE 0,457 | X
=1

20,
where (1) holds since A? is function of X and A? = ng#*n,* > iogz, V(Xig, X;) for

10
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i € I), due to part (a) of Assumption 3.2, (2) holds since the observations are i.i.d.,
and (3) follows due to part (b) of Assumption 3.1.

To prove that E[I2] < n L E[||AY||*]Cyp, first note that

n

2
E[I; | X™] =E (n_lz(A?)Tﬁwf) | x ™

i=1

—~
[l
N

E

=1

n? Z (AN T8,02)" | XW]

=072 Y (AN E[(0,07)0405) " | Xi] A7

=1

n 2y [JAY[PC % p

i=1

—~
~

A
IN=

where (1) holds because E [((A2)T0,47) ((A5)T0,47) | X™] = 0 when i # j (since
A? and A are functions of X ()" and part (b) of Assumption 3.1), (2) holds since A?
and A? are functions of X (™ and the observations are i.i.d., and (3) holds by part (d)
of Assumption 3.1. Then,

E[B[I; | X™]] < Eln~2 ) [|AY[PCy x p] = n ™ E[[|AY|[F]C1p

=1

which completes the proof of this claim.

Claim 3: Iy = O,(ng>™™¥¥*}) " Algebra shows

|13| _ ’ —2min{e1,p2} _IZRl Tanl/’ |

1/2 N 1/2
< n82mm{s01#’2} ( -1 Z IR ||2) (n—l Z ||an¢lz||2)
i=1

1/2
(1) —mln
ny 2L 0,1 ( ZH@W) :

(2) (;len{(pl 2} ” O O
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)

3 O, (nEQ min{ep1,p2 })

where (1) holds by part (c) of Assumption 3.2, (2) holds by the law of large numbers,
Jensen’s inequality (e.g., (E[||0,%7]}] < E[||0,%7|[*]*/?), and part (c) of Assumption
3.1, and (3) holds since n/2 <n <mn

Part 2: By Taylor approximation and mean-value theorem (since ¥*(w,n) is twice

continuously differentiable on n by Assumption 3.1), it follows
. 1
OF = wf = (i — ) 07 + 5 (s — mi) O (s — )

where 3%1% = 074)*(Wi,n)|y=s, for some 7; (due to mean-value theorem). Using this

Y @ =) =0Tty (0 m)T&?ww ~n” Z D HGE

(1) — min — 1 — A~ T2/ A
= Op(n~minlere2d=1/2) 4 " "> (s —mi) T o7 (R — mi)
i=1

@ Op(n_2 min{whw}) 7

where (1) holds due to Part 1, and (2) holds due to the derivations presented next,

[ (0 — i) T O (f; — mi)| < m” Z! — ;)" O (7 — )|
=1

1) R

<n” Z |17 = ml[*Ca x p

=1

—~

C) 0, (- 2minoneny

where (1) holds due to part (e) of Assumption 3.1 and Loeve’s inequality (Davidson
(1994, Theorem 9.28)), and (2) holds due to part 4 of Lemma C.4.

Part 3: It follows from part 1, by using that d,m; = 9,¢? — 9,980y and |6| <
M /Cy (due to parts (a) and (c) of Assumptions 3.1 and the representation of §, as

a ratio of expected values in (2.3)).
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Part 4: By Taylor expansion and mean value theorem,
iy —my = (0 =) Oyma + (0 — i) " (93ma/2) (7 — m) + 7

where 7; is the Lagrange’s remainder error term (since m is three-times continuous

differentiable on 1 by assumption on t*). Therefore,
|73 < (1/6)p*2Csl | — mil |, (E.27)

where the bound follows by part (e) of Assumption 3.1, Jensen’s inequality, and the

definition of Euclidean norm. It follows

n

n~1? Z(mz —my)/Jo=1 + I+ I3 ,

=1

where

n

L =n"'? Z(ﬁz — Th‘)T&ymz‘/Jo
i=1

Ly=n""? Z(ﬁz — )" (O2mi/(2o)) (7 — i)

i=1

Iy =n1/? Z 7i/Jo
=1

In the claims below I show that Iy = T o + 0,(n™), I, = T,"ic + 0,(n"¢), and I3 =
0,(n~%), which is sufficient to complete the proof of part 4. Furthermore, if Assump-
tion 3.3 holds, then Proposition C.5 implies limy, o inf <, Var[p® =17 ] > 0; and
if Assumption A.1 holds, then Proposition C.3 implies lim,,_, inf x<,, Var [n‘mﬂ, K] >

0.

Claim 1: I, = T! jc 4+ Op(n~2min{er22l) By part (a) of Assumption 3.2, it follows

L=5L,+12,
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where R; = }A%(XZ) for i € Z;, and

n

1171 = n_1/2 Z(AZ)Taan/JO

=1

11’2 == n_1/2 Z(n{zwlfii)Tanmi/Jg

i=1

By definition of 7! ;- in (A-3), it follows that I = T, ;. Since dym; = Oyp? — O ¢
and |0p| < MY*/Cy, it follows that I, 5 is O,(n=2™mM#1:¢2}) due to proof of Claim 3

in Part 1 of this lemma.

Claim 2: I = T + Oy(n'/>-3min{ere2ly By part (a) of Assumption 3.2, it follows
Iy =151+ 215+ Ir3

where R; = }A%(Xl) for 1 € 7, and

n

Ly =n"'? Z(Ai)T(@?mi/(QJO))(Ai)

=1
Ly =n 1/22 T(02mi/ (2J0)) (g > Ry)
I3 =n"1/? Z(ng%}zﬂ(agmi /(2J0))(ng "' Ry)

i=1

By definition of 7" in (3.12), it follows that Ioy = 7,". In what follows, I prove
claims that imply I5; = 0,(n™¢) for j = 2, 3 using that ¢ < 3¢; — 1/2 since ¢y < 1/2,

which is sufficient to complete the proof of claim 2.

Claim 2.1: Iy = O, (nt/?=3min{ere2})  To gee this, consider the following derivations,
(1) —2 min -
2a| < 1 »C, 2min{¢p1, <p2}Ri||
[ Lo < 0'/? x pC ZHAHXH
o 1/2 n
< n1/2n52min{<ﬁ1,<ﬂ2} X pCl (n—l Z ||Az||2> « (n—l Z ||Rz||2>
i1 i=1

1/2
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& 2 2mintereat o 0 (pmmin{eneady x O (1)

o Op (n1/2—3 min{gpl,cpg})

where (1) holds by triangle inequality, part (e) of Assumption 3.1, Jensen’s inequality,
and definition of Euclidean norm, (2) holds by Cauchy-Schwartz inequality, (3) holds
by Lemma C.1 and by part (c) of Assumption 3.2 and Markov’s inequality.

Claim 2.2: Iz = O,(nt/?4min{ere2}) - The proof is similar to Claim 2.1; therefore,

it is omitted.

Claim 3: I3 = O, (n'/?=3min{ere2}h)  Using (E.27), it follows

|Is] < (1/6)p*2Ca/Jon™ " Y ([ —mil* -

i=1
In what follows, I prove that n=Y23""  [|f; — mi||? is O,(n'/2=3¢1),
By part (a) of Assumption 3.2 and since ¢; < s, it follows

fi—m= A + nanin{S@h(ﬁZ}Ri

where A; = AL+A? and R, = }?(XZ) Using triangle inequality and Loeve’s inequality
(Davidson (1994, Theorem 9.28)) in the previous expression, it follows

N —6 min s ~
||77i_77i||3§22 (||Az||3+n0 {<P1<P2}||Ri||3>

which implies

n! Z 7 = mil|* < 2°(Is1 + I52)

=1

where

n
I3y =n"" Z Jravl
i=1

n
I3g=n"" ZREGWHRiH?’

=1
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To complete the proof of claim 3, it is sufficient to show I3; = O,(n™?%') and
I35 = O0,(n'/27%¢1) since they imply n=Y23"" || — mil|? is O,(nt/273¢1).

Claim 3.1: I3, = O,(n=3m{ere2}) The proof is a direct result of Lemma C.1 and

Markov’s inequality; therefore, it is omitted.

Claim 8.2: I35 = O,(n'/2~6min{ere2}) - Consider the following derivations,

. 3/2
(1) ) A
I35 < nt/2p~6min{ere2) (n_l Z HRiH2)
=1
@ n'/? x pOminfenezt o 0,(1)

where (1) holds by Loeve’s inequality (Davidson (1994, Theorem 9.28)), and (2) holds
by part (c) of Assumption 3.2 with Markov’s inequality. This completes the proof of

claim 3.3.

Claim 1 and Claim 2 in the proof of Part 1 imply that 7;ZK is O, (n~min{ere2}),
By the same argument used in the proof of Part 2 to bound the non-linear expres-

sion (but using Lemma E.8 instead of part 4 of Lemma C.4), it follows that 7"} is
Op(nl/Q*Qmin{@l,m})‘ ]

E.10 Proof of Lemma C.3

Proof. In what follows, the results are proved for any given sequence K that diverges
to infinity as n diverges to infinity, which is sufficient to guarantee the result of this

lemma.

Part 1: The proof of (C-3) has two steps. The first step shows

2
B (nk1/2 Z(ﬁz - Ui)Tanwf) < Op~2min{ereal (E.28)

1€Ty

%)



for some positive constant C' = C(p, Cy, My, Ms). The second step shows
2
B €Ty

which is sufficient to prove (C-3) by using Markov’s inequality and 1/2 < 2min{¢p, @2}.

Step 1: Consider the following derivation

E (”/;1/2 Z(ﬁz - 771>Ta77¢f> | (W;:j ¢ Ti)

1€Ty

which is equal to

)]

2B gt Y (G- ) 0auE)” | (W2 ¢ Th)
1€Ly,
2 S — ) B [0 0009) | (W, ¢ T0)] (s — o)
ieTh
(3)
% Cy xpxmn' Z |76 (X3) — mo(X)| 2

1€Ly

where (1) by the i.i.d zero mean of the random vectors {(9; — m;) " 9,07 : i € I;.}
conditional on (W; : j ¢ Zj) that holds by part (b) of Assumption 3.1, (2) holds
since 7; — n; are not random conditional on (W : j ¢ Zj), and (3) by part (d) of
Assumption 3.1 and Loeve’s inequality (Davidson (1994, Theorem 9.28)).

Using the previous derivations, it follows

Cyxpxnct Y [lie(X3) = mo(X3) 2

1€Ly,

2
E (nﬁl/ZZ(ﬁi—m)T@Wf) <k

1€Ly

D 0y xp x B [[Ji(X:) = no(X)| ]

(2 CO'n~2min{e1,e2}

for some positive constant C' = C'(p, Cy, My, Ms), where (1) holds since 7 (X;) —n0(X;)
are i.i.d. for i € Zj, and (2) by part 2 of Lemma C.4 and (E.31), which defines the
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constant C'. This completes the proof of step 1.

Step 2: Note that the maximum of K positive number is bounded by their sum.
Using this observation and (E.28), it follows (E.29).

Part 2: The proof of (C-4) is similar to the proof part 1. It follows from the following

inequality:

-1 o 2| <
K A, T, ZH”@ mll*| < E

S €Lk

i (nél > i —m||2>]

k=1 1€k
= KE || — nil|”]
< Kn—l/?o(n—Qmin{<p1,<p2}+1/2) 7

which goes to zero since 1/2 < 2min{¢s, p2}, and this is sufficient to prove (C-4) by
using Markov’s inequality.

Part 3: The proof of (C-5) follows from (C-3), by using 9,m; = 9,¢* — 650,9" and
16p] < M11/4/CO (due to parts (a) and (c¢) of Assumptions 3.1 and (2.3)).

Part 4: The proof of (C-6) follows from (C-3) and (C-4) and the following inequality

Y =) o + Copni Y |l — il

1€y 1€y,

which holds due to Taylor expansion and mean valued theorem, part (e) of Assump-

tion 3.1, and Loeves’ inequality. O

E.11 Proof of Lemma C.4

Proof. For i € Iy, denote A; = A? + Al where

1 _ o —p1, —1/2
A; =mny " ng Ong.gii »
J¢Ty

b__  —p2, —1
A} =ny"ng E bng ji »
JETx

Here, 8,0 = 0no(W;, X;) and by, j; = b, (X;,X;), and 0,, and b,, are functions

satisfying Assumption 3.2. In what follows, the results are proved for any given
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sequence K that diverges to infinity as n diverges to infinity, which is sufficient to

guarantee the result of this lemma.

Part 1: By part (a) of Assumption 3.2,
fi —mi = AL+ AL pg2minlerent f
and by Loeve’s inequality (Davidson (1994, Theorem 9.28)),
1 — 1 < 8% (VAU + AL + [fng > o2 g 1)

Using the previous inequality, it follows

n S [l — il < 3 (n S THALR + 07 (AL 4 g Sttt N HRZ-W)
=1 =1 =1 =1
-7 (Op<n‘4mi“{m}> g S ||Ri|l4>
=1
& 0, (n-tminterealy (E.30)

where (1) holds by Markov’s inequality and Lemma C.1, and (2) holds by part (d) of
Assumption 3.2 and since ng = ((K — 1)/K)n, which completes the proof of part 1.

Part 2: By part (a) of Assumption 3.2,
fh‘ — N = Al + Ab -+ n(;2min{<p1,<p2}Ri
and by Loeve’s inequality (Davidson (1994, Theorem 9.28)),
17— mal[* < B[ A7+ B[ A + 3[[ng > Bl [* -
Using the previous inequality, it follows

E[[; — mil|*] < 3E[|AY] + 3E[||AY ] + 3E[|ng ** il

(1) .
< 3E[||AY[YY2 4 3E[||AL|[Y2 + 3ny 22 O(1)

—

i) O(n72min{tp1,g&2}> , (Egl)
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where (1) holds by Jensen’s inequality and part (c¢) of Assumption 3.2, and (2) holds
by Lemma C.1 and since ng = ((K — 1)/K)n. This completes the proof of part 2.

Part 3: It follows from parts 2 and Markov’s inequality.

Part 4: It follows from part 2 and by using that n!/2-minfene2} = o(1). O

Lemma E.1. Suppose Assumptions 3.1 and 3.2 hold. In addition, assume K is such

that K <n, K — oo and K/n" — ¢ € [0,400) as n — oc.

1. If v =1/2, then

-1
—1 a —

Jmax 1+ n, ;(ZD (Wi,mi) — Jo)/Jo| = Op(1)

7 k
2. If v=1/2, 1/4 < min{p1, p2} and p; < 1/2, then
-1

max L+ngt Yy (@ (Wi, i) — Jo)/Jo| = Op(1)

77777 1€Ty

" -1
n S W) = 0,(1)
i=1
4. If v =1 and ¢1 > 1/4, then
" ~1
n Y Wt (Wi Jo| = Op(1)
i=1

where n; = no(X;), 1 is as in (2.5), and Jy = E[Y*(W;,n;)].

Proof. Part 1: Consider M > 1 and the following derivations

-1
(LAt Y W =)/ D) <M

1€Ty
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-1
Yp L+ngt Y (WF—do)/Jo| <M
1€Ty
K
=P (1/M < |40 (W = Jo) /o )
1€Ty

v

P (1/M < T4ty (4 - Jo)/Jo)

1€Ty,

( > Wy —Jo)/Jo<—(M—1)/M>}

é{ ( ST we — Jo)/ o >(M—1)/M>}
ERS { = D/ B | 0] Y = ) o
2 11— (M — 1)/M)Y 108 [|(u8 — Jo)/Jol'] 1S

L— (M = 1)/M)'n 2K*10B [|(¢¢ — Jo) /'] K

D1 (e 2R (M — 1)/MYO(1)

(M
>1-o0(1)

(1) holds since {¢¢ : 1 <i < n} arei.i.d. random variables and because {Z; : 1 < k <
K} defines a partition of {1,. } (2) holds since M > 1, (3) holds by Markov’s
inequality, (4) holds since {1/)‘1 .1 € I} are zero mean i.i.d. random variables,
(5) holds by Bernoulli’s mequahty, (6) holds by parts (a) and (c) of Assumption 3.1,
and (7) holds since K = O(n'/?).

Part 2: Define the event E, . = {maxy— _ |0, Ziezk(@/;f — 1/)?)/(]0‘ < €}. Now,
consider an small € > 0 and M > 1 such that (1/M + €)™ > 1 and the following
derivations

-1

P max \1+n (W = Jo)/Jo+ (4 —4)/Jo| <M
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P ( min 14+t S8 — Jo) /o (5 — )/ o] 1/M)

€Ty

> P( min 1+n,;1 (lﬂf—Jo)/Jo—i-(?;?—Tﬁ)/Jo >1/M, En,e)

€Ty
@
= (k_f{linK Lbng' Y (f = Jo)/Jo| = 1/M +e, En>
S 1€y,
. 1 a .
> P (k:I{lan L+n, GZIWZ —Jo)/Jo| > 1/M~|—6> — P(E;))
i€Z),
@) -
> P maXK 1+n;12(¢2‘1_J0)/J0 < (1/M—|—€>_1 _0(1)
777777 1€T

77777

the event £, . and triangular inequality, (2) holds since P(E}, ) = o(1) due to Lemma
C.3 (here I use 1/2 < 2min{y1, w2} and 1 < 1/2), and (3) holds by the same argu-
ments presented in the proof of Part 1 by using (1/M + ¢)~! instead of M; therefore,

it is omitted.

where (1) holds because ming_; _x — )n,;l > ier, (1o — ¢f)/Jo‘ > —e conditional on

Part 3: Consider M > 1 and M > 1 such that M < ((M — 1)/M)n'/? and the
following derivations,
<1 /M)

-1
> M P(

P (n/ S @ = o)/ o < —((M — 1>/M>n1/2)

i=1

P <n1/2 i(wg —Jo)/Jo < —M)

i=1

n

L+n ) (@8 = Jo)/Jo

i=1

P

n=t> W/ o
i=1

INE

A
A

D o(—M /o) + o(1)

—
=

where (1) holds since M > 1, (2) holds by definition of M, and (3) holds by CLT as
n — oo (here, 02 is as in (C-2)). To complete the proof, note that ®(—M /o,) — 0
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as]\;[—>oo.

Part 4: Define the event £, = {‘n_1 S (08 —®)/Jo| < €}. Now consider an
small € > 0 and M > 1 such that (1/M 4 ¢)~' > 1. Note that P(E; ) = o(1) due
to Lemma C.2 (here I use min{py, po} > 1/4). The proof is completed by similar

arguments presented in part 2 and part 3; therefore, it is omitted. O
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