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Abstract

This paper proposes a local projection residual bootstrap method to construct con-

fidence intervals for impulse response coefficients of AR(1) models. Our bootstrap

method is based on the local projection (LP) approach and involves a residual bootstrap

procedure applied to AR(1) models. We present theoretical results for our bootstrap

method and proposed confidence intervals. First, we prove the uniform consistency

of the LP-residual bootstrap over a large class of AR(1) models that allow for a unit

root, conditional heteroskedasticity of unknown form, and martingale difference shocks.

Then, we prove the asymptotic validity of our confidence intervals over the same class

of AR(1) models. Finally, we show that the LP-residual bootstrap provides asymptotic

refinements for confidence intervals on a restricted class of AR(1) models relative to

those required for the uniform consistency of our bootstrap.
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1 Introduction

This paper contributes to a growing literature on confidence interval construction for im-

pulse response coefficients based on the local projection (LP) approach (Jorda (2005)). In

this literature, the LP approach estimates an impulse response coefficient as one of the slope

coefficients in a linear regression of a future outcome on current or lag-augmented covariates

(Ramey (2016); Nakamura and Steinsson (2018); Montiel Olea and Plagborg-Møller (2021)).

Recent theoretical results exist for the asymptotic validity of the confidence intervals con-

structed around the LP estimator, which hold over a large class of vector autoregressive

models (Xu (2023)). Since these confidence intervals have small-sample coverage distortions

(e.g., coverage probability is lower than expected), their bootstrap versions are recommended

for practical use. However, theoretical results for these bootstrap versions are unknown, even

for the AR(1) model. This paper proposes a different bootstrap method to construct LP

confidence intervals with theoretical guarantees for a class of AR(1) models that allow for a

unit root, conditional heteroskedasticity of unknown form, and martingale difference shocks.

We propose an LP-residual bootstrap method to construct confidence intervals for impulse

response coefficients of AR(1) models. Our bootstrap method is based on the LP approach

and involves a residual bootstrap procedure applied specifically to AR(1) models.1 Our

bootstrap confidence intervals are centered at the LP estimator and use heteroskedasticity-

consistent (HC) standard errors and a bootstrap critical value. Section 3 presents the details.

We rely on the asymptotic distribution theory initially developed in Montiel Olea and

Plagborg-Møller (2021) and generalized in Xu (2023). In their framework, a root Rn(h) based

on the LP approach can be defined for a given horizon h and a sample size n. Here, by a root

we refer to a real-valued function depending on the data and an impulse response coefficient.

Their results guarantee the root Rn(h) is asymptotically distributed as a standard normal

distribution for a class of VAR models that allow for multiple unit roots and conditional

heteroskedasticity of unknown form, and even at intermediate horizons, i.e., horizons h that

are allowed to grow with n, e.g., h = hn ∝ nζ , ζ ∈ [0, 1). As a result, the root Rn(h) can be

used to construct a confidence interval Cn(h, 1−α) for an impulse response coefficient using

a normal critical value (quantile of the asymptotic distribution). Furthermore, Cn(h, 1− α)

has asymptotic coverage equal to the nominal level 1 − α uniformly over the parameter

space (VAR model coefficients) and a wide range of intermediate horizons (e.g., uniform

1Section 7 presents the LP-residual bootstrap for VAR(p) models, but its theoretical properties are
unknown and left for future research; see Remarks 4.4 and 5.5 for further discussion. Appendix E.1 reports
a Monte Carlo simulation for the LP-residual bootstrap for vector autoregressive models.
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over h ≤ hn, where hn is any fixed sequence such that hn = o(n)). Nevertheless, Monte

Carlo simulations report that Cn(h, 1− α) has a lower coverage probability than expected.

We propose the LP-residual bootstrap method to approximate the distribution of the

root Rn(h) as an alternative to the asymptotic distribution. We use our approximation

to calculate bootstrap-based critical values; see Section 3.1 for the step-by-step procedure.

Specifically, we construct a confidence interval C∗
n(h, 1−α) for an impulse response coefficient

using the root Rn(h) and a bootstrap critical value; see Section 3 for details.

Our first result proves the uniform consistency of the LP-residual bootstrap. More con-

cretely, we demonstrate in Section 4 that the distribution of the root Rn(h) can be approx-

imated by its bootstrap version uniformly over the parameter space (e.g., ρ ∈ [−1, 1]) and

a wide range of intermediate horizons (e.g., uniform over h ≤ hn, where hn is any fixed

sequence such that hn = o(n)). Our result applies to a large class of AR(1) models that

allow for a unit root, conditional heteroskedasticity of unknown form as in Gonçalves and

Kilian (2004), which includes ARCH and GARCH shocks, and a sequence of shocks that

satisfy the martingale difference assumption. To obtain this result, we prove the root Rn(h)

is asymptotically distributed as a standard normal distribution for sequences of AR(1) mod-

els with i.i.d. shocks (Theorem B.1). In particular, we prove that a high-level assumption

(Assumption 3 in Montiel Olea and Plagborg-Møller (2022) and Assumption 4 in Xu (2023))

necessary for the theoretical properties of Cn(h, 1−α) can be verified for sequences of AR(1)

models with i.i.d. shocks (Proposition B.1).

Our first result implies that the LP-residual bootstrap method provides asymptotically

valid confidence intervals over a large class of AR(1) models that allow for a unit root, condi-

tional heteroskedasticity of unknown form (e.g., GARCH shocks), and martingale difference

shocks. Moreover, our confidence interval C∗
n(h, 1− α) has an asymptotic coverage equal to

the nominal level 1−α uniformly over ρ ∈ [−1, 1] and a wide range of intermediate horizons.

Our second set of results shows that the LP-residual bootstrap provides asymptotic refine-

ments to the confidence intervals on a more restricted class of AR(1) models (e.g., |ρ| ≤ 1−a,
where a ∈ (0, 1), and i.i.d. shocks with positive continuous density), that is, the size of the

error in coverage probability (ECP) of C∗
n(h, 1 − α) is o(n−1), whereas the size of the ECP

of Cn(h, 1 − α) is O(n−1). More concretely, Theorem 5.2 shows the ECP of C∗
n(h, 1 − α) is

o(n−(1+ϵ)) for some ϵ ∈ (0, 1/2). To obtain these results, we derive Edgeworth expansions

for the distribution of the root Rn(h) and its bootstrap version for a fixed h and |ρ| ≤ 1− a,

where a ∈ (0, 1); that is, the Edgeworth expansions are obtained for stationary AR(1) models
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and fixed horizons. An informal discussion to calculate the size of the ECP using Edgeworth

expansions appears in Section 5.1, while the formal results are established in Section 5.2.

Other bootstrap methods to construct confidence intervals for the impulse response coef-

ficients have been considered and recommended based on simulation studies in the growing

literature on LP inference. Montiel Olea and Plagborg-Møller (2021) use a wild bootstrap

procedure to generate new samples and compute critical values, but the theoretical results

for their bootstrap method are unknown. Kilian and Kim (2011) present a simulation study

including a block-bootstrap method to construct confidence intervals based on the LP ap-

proach, but the theory of their block-bootstrap method is unknown; see Remarks 5.1 and 5.2

for alternative block-bootstrap procedures with theoretical guarantees. Recently, Lusompa

(2023) proposes a block wild bootstrap method for confidence interval construction that is

point-wise valid for a class of stationary data-generating processes; however, his bootstrap

method is not applicable for an AR(1) model with a unit root. In contrast, we present

a bootstrap method based on the LP approach with theoretical guarantees for a class of

AR(1) models that allow for a unit root, conditional heteroskedasticity of unknown form,

and martingale difference shocks.

More broadly, we contribute to the literature on confidence interval construction for

impulse response coefficients. For short horizons (fixed h), the problem of confidence interval

construction has been studied by Andrews (1993), Hansen (1999), Inoue and Kilian (2002),

Jorda (2005), Mikusheva (2007, 2015), among others. For long horizons (h=hn∝(1 − b)n,

b ∈ (0, 1)), the problem of confidence interval construction was discussed and revised by

Phillips (1998), Gospodinov (2004), Pesavento and Rossi (2006), and Mikusheva (2012) since

the standard methods for short horizons may produce invalid confidence intervals when the

data-generating process allows for unit roots. Recently, the problem of confidence interval

construction for intermediate horizons (hn = o (n)) was addressed in Montiel Olea and

Plagborg-Møller (2021) and Xu (2023), which was a case not covered in the literature. In

this paper, we propose bootstrap confidence intervals that are asymptotically valid at short

and intermediate horizons.

We also contribute to the literature on uniform inference in autoregressive models, where

the confidence intervals for impulse response coefficients are uniformly valid, that is, they

have an asymptotic coverage equal to the nominal level uniformly over the parameter space

(e.g., uniformly over ρ ∈ [−1, 1] for the AR(1) model). Mikusheva (2007, 2012) shows that the

grid bootstrap proposed by Hansen (1999) provides confidence sets that are uniformly valid

for the impulse responses when the sequence of shocks is a martingale difference sequence
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with constant conditional variance. However, it is unknown if the grid bootstrap is uniformly

valid for AR(1) models with GARCH shocks; we report simulations for the grid bootstrap

in Section 6 and Online Supplemental Appendix E. Inoue and Kilian (2020) show that

confidence intervals based on a lag-augmented autoregressive method are uniformly valid

for impulse response coefficients when the sequence of shocks is i.i.d. It is unknown if their

results hold for martingale difference shocks. Montiel Olea and Plagborg-Møller (2021)

and Xu (2023) show that confidence intervals based on (lag-augmented) local projections

are uniformly valid for impulse response coefficients; nevertheless, Monte Carlo simulations

report lower coverage probability than expected. In contrast, our bootstrap method produces

confidence intervals that are uniformly valid for a larger class of martingale difference shocks

with conditional heteroskedasticity of unknown form (allowing for GARCH shocks).

The remainder of the paper is organized as follows. In Section 2, we describe the setup

and previous results. In Section 3, we introduce our bootstrap confidence interval and

the LP-residual bootstrap. In Sections 4 and 5, we study the theoretical properties of the

LP-residual bootstrap: uniform consistency and asymptotic refinements. In Section 6, we

investigate the numerical performance of the LP-residual bootstrap using a small simulation

study. In Section 7, we describe how to implement the LP-residual bootstrap for VAR

models. Finally, in Section 8, we present concluding remarks. All the proofs are presented in

Appendices A and B, and Online Supplemental Appendices C and D. Additional simulation

results appear in Online Supplemental Appendix E.

2 Setup and Previous Results on Local Projection

Consider an AR(1) model,

yt = ρyt−1 + ut, y0 = 0, ρ ∈ [−1, 1] . (1)

Denote the impulse response coefficient at horizon h ∈ N by

β(ρ, h) ≡ ρh . (2)

An estimator for β(ρ, h) based on the LP approach is obtained as the slope coefficient of yt

in the linear regression of yt+h on yt and yt−1,

yt+h = β̂n(h)yt + γ̂n(h)yt−1 + ξ̂t(h), t = 1, . . . , n− h , (3)
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where (β̂n(h), γ̂n(h)) and {ξ̂t(h) : 1 ≤ t ≤ n − h} are the coefficient vector and residuals

of the linear regression (3), respectively. This lag-augmented LP approach was developed in

Montiel Olea and Plagborg-Møller (2021), where they give conditions under which the coef-

ficient β̂n(h) consistently estimates β(ρ, h). Equation (3) is a lag-augmented LP regression

since the coefficient on yt−1 is known to be zero under (1); see Remark 2.2 for additional

details on this LP approach.

Let ŝn(h) be the heteroskedasticity-consistent (HC) standard error of β̂n(h) in the lag-

augmented LP regression (3), which can be computed as follows

ŝn(h) ≡

(
n−h∑
t=1

ût(h)
2

)−1/2(n−h∑
t=1

ξ̂t(h)
2ût(h)

2

)1/2(n−h∑
t=1

ût(h)
2

)−1/2

, (4)

where ût(h) ≡ yt − ρ̂n(h)yt−1 and

ρ̂n(h) ≡

(
n−h∑
t=1

y2t−1

)−1(n−h∑
t=1

ytyt−1

)
. (5)

For a given h ∈ N, we consider the following real-valued root for the parameter β(ρ, h):

Rn(h) ≡
β̂n(h)− β(ρ, h)

ŝn(h)
, (6)

where β(ρ, h) is as in (2), β̂n(h) is computed as in (3), and ŝn(h) is as in (4). We denote the

distribution of the root Rn(h) by

Jn(x, h, P, ρ) ≡ Pρ (Rn(h) ≤ x) , (7)

where x ∈ R, h ∈ N, P is the distribution of the shocks {ut : t ≥ 1}, ρ ∈ R, and Pρ denote

the probability distribution of the sequence {yt : t ≥ 1}, which is defined jointly by the

distribution P and the parameter ρ in (1).

Let cn(h, 1− α) be the 1− α quantile of |Rn(h)| under the distribution Pρ,

cn(h, 1− α) ≡ inf {u ∈ R : Pρ (|Rn(h)| ≤ u) ≥ 1− α} . (8)

Ideally, we would use the root Rn(h) and the critical value cn(h, 1−α) to construct confidence
sets for β(ρ, h) with a coverage probability of 1-α. That is collecting all the parameters β(ρ, h)
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such that |Rn(h)| ≤ cn(h, 1−α), which is equivalent to defining the next confidence interval

C̃n(h, 1− α) ≡
[
β̂n(h)− cn(h, 1− α) ŝn(h), β̂n(h) + cn(h, 1− α) ŝn(h)

]
.

However, the critical value cn(h, 1 − α) is unknown since the distribution of the root is

unknown in general. As a result, the confidence interval C̃n(h, 1− α) is infeasible. For this

reason, it is common to approximate the distribution of the root Rn(h) relying on asymptotic

distribution theory or bootstrap methods to approximate the infeasible cn(h, 1− α).

2.1 Previous Results

The asymptotic distribution theory developed in Montiel Olea and Plagborg-Møller (2021)

and Xu (2023) implies that the distribution Jn(x, h, P, ρ) converges to the standard normal

distribution Φ(x) whenever certain assumptions on the distribution of the shocks P hold.

Moreover, this convergence is uniform over the values of ρ ∈ [−1, 1] and a wide range of

intermediate horizons, that is

sup
|ρ|≤1

sup
h≤hn

sup
x∈R

|Jn(x, h, P, ρ)− Φ(x)| → 0 as n→ ∞ , (9)

where hn is any fixed sequence such that hn ≤ n and hn = o (n). Assumptions 4.1 and 4.2

in Section 4 are sufficient conditions on the distribution P to obtain (9) due to Theorem 2

in Xu (2023).

The confidence interval for β(ρ, h) based on asymptotic distribution theory is defined as

Cn(h, 1− α) ≡
[
β̂n(h)− z1−α/2 ŝn(h), β̂n(h) + z1−α/2 ŝn(h)

]
, (10)

where z1−α/2 ≡ Φ−1(1 − α/2) is the 1 − α/2 quantile of the standard normal distribution.

The result in (9) implies that the confidence interval Cn(h, 1−α) is uniformly asymptotically

valid in the sense that its asymptotic coverage probability is equal to the nominal level 1−α
uniformly over ρ and a wide range of intermediate horizons h,

sup
|ρ|≤1

sup
h≤hn

|Pρ (β(ρ, h) ∈ Cn(h, 1− α))− (1− α)| → 0 as n→ ∞ ,

where hn is any fixed sequence such that hn ≤ n and hn = o (n). Three features of

Cn(h, 1 − α) deserve further discussion. First, it is simpler to compute than the available
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alternatives in the sense that it does not require any tuning parameter. It is common to use

heteroskedasticity- and autocorrelation-robust (HAR) standard errors for inference whenever

we have dependent data. The major complication of HAR standard errors is the choice of

the (truncation) tuning parameter; see Lazarus et al. (2018). In contrast, the HC standard

errors ŝn(h) defined in (4) are simple to compute and sufficient for inference under certain

conditions on the distribution P ; see Remark 2.1 for further explanation. Second, the uni-

form asymptotic validity of the confidence interval Cn(h, 1−α) avoids pre-testing procedures

about the nature of the data-generating process (|ρ| < 1 vs ρ = 1) that can distort inference;

see Mikusheva (2007). In particular, inference using Cn(h, 1 − α) holds regardless of the

value of ρ ∈ [−1, 1]. Third, the confidence interval Cn(h, 1−α) has theoretical guarantees at
intermediate horizons (e.g., h = hn ∝ nζ , ζ ∈ (0, 1)). This is an important feature for infer-

ence on impulse response coefficients at intermediate horizons. Other methods to construct

confidence intervals that work at short horizons (h fixed) may have problems at long and

intermediate horizons; see Phillips (1998), Gospodinov (2004), Pesavento and Rossi (2006),

Mikusheva (2012), and Montiel Olea and Plagborg-Møller (2021) for additional discussion.

Remark 2.1. The HC standard errors ŝn(h) defined in (4) are sufficient for the construction

of valid confidence intervals under certain conditions on the distribution P . In particular,

as it was pointed out by Xu (2023), it is sufficient and necessary that the scores {ξt(ρ, h)ut :
1 ≤ t ≤ n − h} be serially uncorrelated, where ξt(ρ, h) ≡

∑h
ℓ=1 ρ

h−ℓut+ℓ. To explain the

sufficiency of this condition, we use the derivations presented on page 1811 in Montiel Olea

and Plagborg-Møller (2021) that imply that the root Rn(h) defined in (6) can be written as

follows(
(n− h)−1/2

∑n−h
t=1 ξt(ρ, h)ut

)
E [ξt(ρ, h)2u2t ]

1/2
×

[
(n− h)−1

∑n−h
t=1 ξ̂t(h)

2ût(h)
2
]−1/2

E [ξt(ρ, h)2u2t ]
−1/2

+ εn(ρ, h) ,

where εn(ρ, h) is a remainder error term. We derive three implications under Assumptions

4.1 and 4.2, presented in Section 4. First, the term in parentheses converges to a normal

distribution with variance correctly scaled by the denominator when the scores are serially

uncorrelated. This condition is guaranteed by part (ii) of Assumption 4.1. Second, the

term between brackets converges in probability to its denominator due to serially uncorrelated

scores. Third, the remainder error term εn(ρ, h) converges in probability to zero. Importantly,

Xu (2023) proposed alternative standard errors for the construction of confidence intervals

under serially correlated scores.

Remark 2.2. The lag-augmented LP regression has the purpose of making the effective
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regressor of interest stationary. To see this, let us use the AR(1) model in (1) to obtain

yt+h = β(ρ, h)yt + ξt(ρ, h), where ξt(ρ, h) =
∑h

ℓ=1 ρ
h−ℓut+h, which can be rewritten as

yt+h = β(ρ, h)ut + ρβ(ρ, h)yt−1 + ξt(ρ, h) .

Based on the previous equality, an estimator for β(ρ, h) is defined as the slope coefficient of

ut in the linear regression of yt+h on ut and yt−1. This estimator is ideal since the effective

regressor is stationary (by assumption). However, this regression is unfeasible since ut is

not observed. Nevertheless, the estimator can also be obtained in the lag-augmented LP

regression of yt+h on yt and yt−1 since yt is a linear combination of ut and yt−1 due to (1).

3 The LP-Residual Bootstrap

This paper proposes an LP-residual bootstrap for confidence interval construction. Our

confidence interval for the impulse response coefficient β(ρ, h) is defined as

C∗
n(h, 1− α) ≡

[
β̂n(h)− c∗n(h, 1− α) ŝn(h), β̂n(h) + c∗n(h, 1− α) ŝn(h)

]
, (11)

where β̂n(h) is an estimator for β(ρ, h) defined in (3), ŝn(h) is its heteroskedasticity-consistent

(HC) standard error defined in (4), and c∗n(h, 1 − α) is a bootstrap critical value defined in

(15).

3.1 Bootstrap Critical Value

Let Y (n) ≡ {yt : 1 ≤ t ≤ n} be data generated by (1). Let c∗n(h, 1 − α) be the bootstrap

critical value involving the following steps:

Step 1: Estimate ρ in the AR(1) model defined in (1) with the data Y (n) using linear regression,

denoted by

ρ̂n ≡

(
n∑

t=1

y2t−1

)−1( n∑
t=1

yt−1yt

)
, (12)

and compute the centered residuals

{ũt ≡ ût − n−1

n∑
t=1

ût : 1 ≤ t ≤ n} , (13)
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where ût ≡ yt − ρ̂nyt−1.

Step 2: Generate a new sample of size n using (1), (12), and (13). Define the sample as

y∗b,t = ρ̂ny
∗
b,t−1 + u∗b,t , y∗b,0 = 0 , t = 1, . . . , n ,

where {u∗b,t : 1 ≤ t ≤ n} is a random sample from the empirical distribution of the

centered residuals defined in (13). The new sample {y∗b,t : 1 ≤ t ≤ n} is called the

bootstrap sample.

Step 3: Compute β̂∗
b,n(h) and ŝ

∗
b,n(h) as in (3) and (4) using the lag-augmented LP regression

and the bootstrap sample {y∗b,t : 1 ≤ t ≤ n}. Define the bootstrap version of the root

R∗
b,n(h) =

β̂∗
b,n(h)− β(ρ̂n, h)

ŝ∗b,n(h)
, (14)

where β(ρ, h) and ρ̂n are as in (2) and (12), respectively.

Step 4: Define the bootstrap critical value as the 1−α quantile of |R∗
b,n(h)| conditional on the

data Y (n), denoted by

c∗n(h, 1− α) ≡ inf
{
u ∈ R : Pρ

(
|R∗

b,n(h)| ≤ u | Y (n)
)
≥ 1− α

}
. (15)

We named this procedure the LP-residual bootstrap due to steps 2 and 3. Step 2 generates

bootstrap samples based on the estimated model and a residual bootstrap procedure. Step

3 computes the bootstrap version of the root based on the lag-augmented LP regression. To

our knowledge, this bootstrap procedure is new; see Remark 3.2 and 5.1 for other bootstrap

procedures involving roots based on LP estimators.

We use the bootstrap critical value c∗n(h, 1 − α) in the construction of the confidence

interval defined in (11). The explicit formula in (15) has two implications. First, the boot-

strap critical value c∗n(h, 1 − α) depends on the data, the sample size n, and the horizon

h. Second, we can compute c∗n(h, 1 − α) with perfect accuracy whenever we use the exact

empirical distribution of the centered residuals defined in (13). However, the computation of

an exact distribution can be computationally demanding; therefore, it is common to approx-

imate it using Monte Carlo procedures as we describe in Remark 3.1, which has a theoretical

justification due to the Glivenko–Cantelli theorem.
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Remark 3.1. It is a common practice to approximate the bootstrap critical value c∗n(h, 1−α)
using a Monte Carlo procedure (Horowitz (2001, 2019)). We generate B bootstrap samples

of size n, where each b-th bootstrap sample {y∗b,t : 1 ≤ t ≤ n} is generated as in step 2.

We then obtain {|R∗
b,n(h)| : 1 ≤ b ≤ B}, where each R∗

b,n(h) is computed as in step 3.

Finally, we approximate the bootstrap critical value c∗n(h, 1 − α) by the 1 − α quantile of

{|R∗
b,n(h)| : 1 ≤ b ≤ B}, denoted by

c∗b,n(h, 1− α) ≡ inf

{
u ∈ R :

1

B

B∑
b=1

I
{
|R∗

b,n(h)| ≤ u
}
≥ 1− α

}
.

The accuracy of the approximation improves as the number of bootstrap samples B increases.

We use B = 1000 in our simulation study presented in Section 6.

Remark 3.2. Another bootstrap procedure to approximate the infeasible critical value cn(h, 1−
α) is presented in Section 5 of Montiel Olea and Plagborg-Møller (2021). They use the wild

bootstrap procedure described in Gonçalves and Kilian (2004). For this reason, we name

their procedure the LP-wild bootstrap. The only difference with respect to the LP-residual

bootstrap is in Step 2. The LP-wild bootstrap defines the shocks as follows: u∗b,t = ũtzb,t

for all t = 1, . . . , n, where {ũt : 1 ≤ t ≤ n} are the centered residuals defined in (13) and

{zb,t : 1 ≤ t ≤ n} is an i.i.d. sequence of standard normal random variables independent

of the data Y (n). To our knowledge, the theoretical properties of the LP-wild bootstrap are

unknown. We include the LP-wild bootstrap in our simulation study presented in Section 6.

Remark 3.3. An alternative to the symmetric percentile-t confidence interval defined in (11)

is the equal-tailed percentile-t confidence interval. The latter is proposed and recommended

in Section 5 of Montiel Olea and Plagborg-Møller (2021), while the former has been found to

perform better in simulations reported by Gonçalves and Kilian (2004). Furthermore, sym-

metric confidence intervals are known to perform better asymptotically in terms of coverage

error in the case of i.i.d. data; see Section 3.6 in Hall (1992). For these reasons, we focus on

and study the properties of the symmetric percentile-t confidence interval in the next sections.

Remark 4.1 presents additional discussion of the equal-tailed percentile-t confidence interval

based on the LP-residual bootstrap. We include equal-tailed percentile-t confidence intervals

based on both LP-residual and LP-wild bootstrap in our simulation study in Section 6.

Remark 3.4. We propose the LP-residual bootstrap method for constructing confidence in-

tervals, aiming to provide a more accurate asymptotic approximation than the first-order

asymptotic distribution for conducting inference. In Sections 4 and 5, we study the validity
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of this bootstrap method and its theoretical properties under assumptions on the distribution

of the shocks and under the assumption of correct specification, i.e., the data are generated

from the AR(1) model in (1). To our knowledge, the theoretical properties of the root Rn(h)

for general forms of misspecification are unknown. Recent work by Montiel Olea et al. (2024)

imply that Rn(h) is still asymptotically pivotal under a specific form of local misspecification.

The analysis of the theoretical properties of the LP-residual bootstrap under misspecification

is outside the scope of this paper.

4 Uniform Consistency

We show the uniform consistency of the LP-residual bootstrap (Theorem 4.1) and that our

proposed bootstrap confidence interval C∗
n(h, 1 − α) defined in (11) is uniformly asymptot-

ically valid (Theorem 4.2). In what follows, we first present and discuss the assumptions,

and we then establish the results.

The following assumption imposes restrictions on the distributions of the shocks P . These

assumptions are based on the general framework developed by Xu (2023) that generalized

the work of Montiel Olea and Plagborg-Møller (2021).

Assumption 4.1.

i) {ut : 1 ≤ t ≤ n} is covariance-stationary and satisfies E[ut | {us}s<t] = 0 almost

surely.

ii) E[u2tut−sut−r] = 0 for all s ̸= r, for all t, r, s ≥ 1.

iii) {ut : 1 ≤ t ≤ n} is strong mixing with mixing numbers {α(j) : j ≥ 1}. There exists

ζ > 2, ϵ > 1, and Cα <∞, such that α(j) ≤ Cαj
−2ζϵ/(ζ−2), for all j.

iv) For ζ defined in (iii), E[u8ζt ] ≤ C8 <∞, and E[u2t | {us}s<t] ≥ Cσ almost surely.

Part (i) of Assumption 4.1 assumes the shocks are a martingale difference sequence.

This assumption allows for uncorrelated dependent shocks and implies that the shock ut

is uncorrelated with yt−1. Part (ii) in Assumption 4.1 includes a large class of conditional

heteroskedastic autoregressive models (e.g., ARCH and GARCH shocks), and it has been

common in the literature; for instance, Gonçalves and Kilian (2004) use a similar assumption

(Assumption A’) to prove the asymptotic consistency of the wild bootstrap for autoregressive
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processes. Moreover, this assumption implies that the process {ξt(ρ, h)ut : 1 ≤ t ≤ n− h} is

serially uncorrelated, where ξt(ρ, h) ≡
∑h

ℓ=1 ρ
h−ℓut+ℓ, which is important for the use of HC

standard errors as we discussed in Remark 2.1. Part (iii) and (iv) of Assumption 4.1 are

mild regularity conditions on the distribution of the shocks P to establish uniform bounds

of approximation errors, which can be relaxed if stronger assumptions are imposed over the

serial dependence of the shocks; see Assumption B.1 in Appendix B.

The next assumption is a high-level assumption and imposes additional restrictions on

the distributions of the shocks P .

Assumption 4.2.

lim
M→∞

lim
n→∞

inf
|ρ|≤1

Pρ

(
g(ρ, n)−2 n−1

n∑
t=1

y2t−1 ≥ 1/M

)
= 1 ,

where g(ρ, k) =
(∑k−1

ℓ=0 ρ2ℓ
)1/2

.

This assumption implies that the estimator ρ̂n(h) defined in (5) is well-behaved in the

sense that its denominator after scaled by the factor g(ρ, n−h) converges to a strictly positive

limit. As a result, we can replace the residual ût(h) ≡ yt − ρ̂n(h)yt−1 by the shock ut, which

implies the second and third implication discussed in Remark 2.1. We show in Proposition

B.1 that Assumption 4.2 can be verified if the shocks are i.i.d. and satisfied mild regularity

conditions (Assumption B.1). In Appendix C of Montiel Olea and Plagborg-Møller (2021),

this assumption is verified for AR(1) models whenever a contiguity condition holds.

Assumptions 4.1 and 4.2 guarantee that the distribution Jn(·, h, P, ρ) defined in (7) can

be approximated by the standard normal distribution Φ(·) uniformly on ρ ∈ [−1, 1] and a

wide range of horizons h as in (9). Let P̂n be the empirical distribution of the centered

residuals defined in (13) and let ρ̂n be the estimator of ρ defined in (12). Using this notation

Jn(·, h, P̂n, ρ̂n) is the distribution of the bootstrap root R∗
b,n(h) defined in (14) conditional

on the data Y (n). The next theorem shows that the distribution Jn(·, h, P, ρ) can be ap-

proximated by the bootstrap distribution Jn(·, h, P̂n, ρ̂n) uniformly on ρ ∈ [−1, 1] and a wide

range of intermediate horizons (e.g., uniform over h ≤ hn, where hn is any fixed sequence

such that hn = o(n)), i.e., the LP-residual bootstrap is uniformly consistent.

Theorem 4.1. Suppose Assumptions 4.1 and 4.2 hold. Then, for any ϵ > 0 and for any
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sequence hn such that hn ≤ n and hn = o (n), we have

sup
|ρ|≤1

Pρ

(
sup
h≤hn

sup
x∈R

|Jn(x, h, P, ρ)− Jn(x, h, P̂n, ρ̂n)| > ϵ

)
→ 0 as n→ ∞ , (16)

where Jn(x, h, ·, ·) is as in (7), P̂n is the empirical distribution of the centered residuals

defined in (13), and ρ̂n is as in (12).

Theorem 4.1 shows that the LP-residual bootstrap is uniformly consistent, i.e., the boot-

strap distribution Jn(·, h, P̂n, ρ̂n) approximates the distribution Jn(·, h, P, ρ) uniformly over

the parameter space (ρ ∈ [−1, 1]) and a wide range of intermediate horizons (h ≤ hn).

Two features of this uniform approximation result deserve further discussion. First, uniform

consistency of bootstrap methods over the parameter spaces of autoregressive models is not

just a technical detail but a crucial property to guarantee reliable inference methods; see

Mikusheva (2007). Otherwise, it is possible to obtain for any sample size n a parameter

ρn such that the distance between the distributions Jn(·, h, P̂n, ρ̂n) and Jn(·, h, P, ρ) is far

from zero. Second, the uniform approximation over the horizons is necessary for inference

purposes at intermediate horizons. Other valid methods for a fixed h do not necessarily work

for h growing with the sample size.

The proof of Theorem 4.1 is presented in Appendix A.1. It has two main ideas. First,

we show that the approximation result presented in (9) also holds for sequences of AR(1)

models with i.i.d. shocks (Theorem B.1),

sup
P∈Pn,0

sup
h≤hn

sup
|ρ|≤1

sup
x∈R

|Jn(x, h, P, ρ)− Φ(x)| → 0 as n→ ∞ ,

where Pn,0 denotes the set of all distributions that satisfy Assumption B.1 in Appendix B.2,

hn is as in Theorem 4.1, Jn(·, h, P, ρ) is as in (7) and Φ(·) is the standard normal distribution.

Assumption B.1 imposes stronger restrictions on the dependence of the shocks (i.i.d.) and

some mild regularity conditions. The formal result is presented in Appendix B.2 as Theorem

B.1. Second, we show that Assumptions 4.1 and 4.2 imply the existence of a sequence of

events En with probability approaching 1 such that the empirical distributions P̂n conditional

on the event En verify Assumption B.1. In other words, we show that P̂n ∈ Pn,0 holds with

a probability approaching 1. The construction of the events En relies on Lemma B.1 in

Appendix B.1. We use the previous two ideas to approximate the distribution Jn(·, h, P̂n, ρ̂n)

by the standard normal distribution Φ(·) conditional on the event En. Finally, we conclude

that the distributions Jn(·, h, P̂n, ρ̂n) and Jn(·, h, P, ρ) are asymptotically close since both
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have the same asymptotic limit.

The next result shows that the confidence interval C∗
n(h, 1−α) defined in (11) is uniformly

asymptotically valid in the sense that its asymptotic coverage probability is equal to 1 − α

uniformly over ρ and a wide range of horizons h.

Theorem 4.2. Suppose Assumptions 4.1 and 4.2 hold. Then, for any sequence hn such that

hn ≤ n and hn = o (n), we have

sup
|ρ|≤1

sup
h≤hn

|Pρ (β(ρ, h) ∈ C∗
n(h, 1− α))− (1− α)| → 0 as n→ ∞ , (17)

where β(ρ, h) and C∗
n(h, 1− α) are as in (2) and (11), respectively.

Theorem 4.2 provides the theoretical justification to conduct inference on the impulse

response coefficient β(ρ, h) using our bootstrap confidence interval C∗
n(h, 1 − α). Note that

the only difference with respect to the confidence interval Cn(h, 1 − α) defined in (10) is

the critical value, which was equal to z1−α/2. The critical value z1−α/2 was the same for

different sample sizes n and horizons h. Instead, we now use a critical value c∗n(h, 1−α) that
depends on the data, the sample size, and the horizon. We evaluate the difference in coverage

probability between the confidence intervals Cn(h, 1−α) and C∗
n(h, 1−α) using simulations

in Section 6. The simulation results provide evidence that the coverage probability of our

proposed confidence interval C∗
n(h, 1− α) is closer to 1− α than that of Cn(h, 1− α).

The proof of Theorem 4.2 is presented in Appendix A.2. It only relies on the uniform

consistency of the bootstrap procedure. We next sketch the main arguments of the proof.

We first note that (17) is equivalent to

sup
|ρ|≤1

sup
h≤hn

|Pρ (|Rn(h)| ≤ c∗n(h, 1− α))− (1− α)| → 0 as n→ ∞ .

We then use that the bootstrap critical value c∗n(h, 1− α) is included in [z1−α/2−ϵ, z1−α/2+ϵ]

with a probability approaching 1 for arbitrary ϵ > 0; see Lemma B.3 in Appendix B.1.

This result is possible because the root Rn(h) is asymptotically normal and the LP-residual

bootstrap is uniformly consistent. Third, we can conclude using algebra manipulation and

the asymptotic normality of the root Rn(h) that

lim sup
n→∞

sup
|ρ|≤1

sup
h≤hn

|Pρ (|Rn(h)| ≤ c∗n(h, 1− α))− (1− α)| ≤ 2ϵ ,

which implies (17) since ϵ > 0 was arbitrary.
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Remark 4.1. We can use the LP-residual bootstrap to construct equal-tailed percentile-t

confidence intervals denoted by C∗
per−t,n(h, 1− α). That is

C∗
per−t,n(h, 1− α) ≡

[
β̂n(h)− q∗n(h, 1− α/2) ŝn(h), β̂n(h)− q∗n(h, α/2) ŝn(h)

]
, (18)

where β̂n(h) is as in (3), ŝn(h) is as in (4), and q∗n(h, α0) is the α0-quantile of the bootstrap

root R∗
b,n(h) defined in (14). Three features of C∗

per−t,n(h, 1− α) deserve further discussion.

First, the bootstrap quantiles q∗n(h, α0) can be approximated using Monte Carlo procedures in a

similar way as we discussed in Remark 3.1. Second, the confidence interval C∗
per−t,n(h, 1−α)

can be asymmetric around β̂n(h) by construction, which is not the case of C∗
n(h, 1− α) that

is a symmetric one. Third, C∗
per−t,n(h, 1− α) is uniformly asymptotically valid,

sup
|ρ|≤1

sup
h≤hn

∣∣Pρ

(
β(ρ, h) ∈ C∗

per−t,n(h, 1− α)
)
− (1− α)

∣∣→ 0 as n→ ∞ ,

where hn is any fixed sequence such that hn ≤ n and hn = o (n). The proof of this claim

follows directly by Theorem 4.1, Lemma B.3, and the proof of Theorem 4.2. We include

C∗
per−t,n(h, 1− α) in our simulation study in Section 6.

Remark 4.2. For short horizons (fixed h), the available grid bootstrap (Hansen (1999);

Mikusheva (2012)) is a valid alternative to our bootstrap confidence interval C∗
n(h, 1 − α)

when the conditional variance of the shocks is constant. The grid bootstrap is a method to

construct confidence intervals for the parameter β(ρ, h) defined in (2) based on test inversion.

Mikusheva (2007, 2012) shows that the grid bootstrap provides confidence intervals that are

uniformly asymptotically valid in the sense that its asymptotic coverage probability is equal

to 1− α uniformly on ρ ∈ [−1, 1]. Nevertheless, when the conditional variance of the shocks

is not constant (e.g., GARCH shocks), it is unknown if the confidence intervals based on the

grid bootstrap are valid. In contrast, C∗
n(h, 1− α) remains valid for a larger class of AR(1)

models. We include the grid bootstrap presented in Mikusheva (2012, Section 3.3) in our

simulation study presented in Section 6.

Remark 4.3. If we restrict our analysis to data-generating processes with weak dependence

(e.g., |ρ| ≤ 1− a for some a ∈ (0, 1)) and consider stronger assumptions in the distribution

of the shocks {ut : 1 ≤ t ≤ n}, then both claims in (16) and (17) can hold for long horizons

(e.g., hn ≤ (1− b)n for some b ∈ (0, 1)). In other words, the confidence interval C∗
n(h, 1−α)

has theoretical guarantees for long horizons under certain conditions. Assumptions 1-2 in

Montiel Olea and Plagborg-Møller (2021) are sufficient to guarantee this claim; a formal

proof can be derived following the same strategy presented in Appendix A to prove Theorem
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4.1 and 4.2. In particular, the proof of Theorem B.1 can be adapted for long horizons

since |ρ| ≤ 1 − a implies that g(ρ, hn)
2/(n − hn) → 0 as n → ∞ for any hn ≤ (1 − b)n,

where g(ρ, h) = {
∑h

ℓ=1 ρ
2(ℓ−1)}1/2. This technical condition was satisfied when |ρ| ≤ 1 and

hn = o(n).

Remark 4.4. For strictly stationary data, the results in Theorems 4.1 and 4.2 can be ex-

tended to vector autoregressive (VAR) models considered in Montiel Olea and Plagborg-Møller

(2021) that satisfy their Assumptions 1 and 2. A proof of these extensions may be done using

the finite sample inequalities presented in their online appendix and following the approach

we presented in Appendixes A and B. We leave the details of a formal proof to future re-

search. For non-stationary data, it is an open question whether the LP-residual bootstrap

is consistent for VAR models. Our approach relies on verifying Assumption 4.2 for an ap-

propriate sequence of AR(1) models; therefore, an analogous approach may require a similar

step for VAR models, which is outside the scope of this paper.

Remark 4.5. We can use Theorem 4.2 to show the uniform validity of alternative methods to

construct confidence intervals for β(ρ, h); however, some alternative confidence intervals can

be impractical at the intermediate horizon. For instance, a confidence interval C∗
la−ar(h, 1−α)

for β(ρ, h) can be obtained by first constructing a confidence interval for ρ using Theorem 4.2

(taking h = 1) and then by using β(ρ, h) = ρh (monotone transformation). Unfortunately,

the confidence interval C∗
la−ar(h, 1 − α) can be very wide asymptotically for certain data-

generation processes and intermediate horizons. More concretely, for any L > 1 it can be

shown Pρ

(
[1/L, L] ⊆ C∗

la−ar(h, 1− α)
)
→ 1 as n → ∞ when ρ = 1 − c1/n (local-to-unit

models) and h ∼
√
n. We formally establish this result in Proposition B.2 in Appendix B.

This result is similar to the ones presented in Appendix B.2.2 in Montiel Olea and Plagborg-

Møller (2021) for the lag-augmented AR bootstrap confidence interval of Inoue and Kilian

(2020), which is a bootstrap confidence interval related but different to C∗
la−ar(h, 1− α).

5 Asymptotic Refinements

This section will impose conditions on the data-generating process that further restrict the

class of AR(1) models relative to that considered in Section 4, ruling out local-to-unity and

unit-root models. These conditions are explicit in Theorems 5.1 and 5.2, where we calculate

the sizes of the error in coverage probability (ECP) for the confidence intervals Cn(h, 1−α)

and C∗
n(h, 1− α) defined in (10) and (11), respectively. The results of these theorems show
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that the LP-residual bootstrap can provide asymptotic refinements for confidence intervals,

that is, the ECP of C∗
n(h, 1− α) is o(n−1), whereas the ECP of Cn(h, 1− α) is O(n−1).

Section 5.1 first provides an informal discussion of the elements and challenges involved

in obtaining asymptotic refinements for confidence intervals with the LP-residual bootstrap.

Section 5.2 then formalizes the discussion by giving conditions on the data-generating process

(Assumption 5.1 and ρ ∈ [−1+ a, 1− a] for a given a ∈ (0, 1)) that are sufficient to establish

these asymptotic refinements (Theorems 5.1 and 5.2).

5.1 Informal Discussion on Asymptotic Refinements

This section gives an informal exposition on how a bootstrap method can provide asymptotic

refinements for confidence intervals when the root is asymptotically pivotal, i.e., the asymp-

totic distribution of the root does not depend on any unknown parameters. The explanation

below is not new; see Hall and Horowitz (1996), Horowitz (2001, 2019), and Lahiri (2003). It

has the purpose of introducing the main elements and challenges that arise to obtain asymp-

totic refinements in the context of dependent data generated from an AR(1) model. It also

describes the approach considered in this paper; see Remark 5.6 for alternative methods.

Main elements: For the sake of exposition, suppose the root Rn(h) has an Edgeworth

expansion up to an error of size o(n−1), that is, the distribution of the root Rn(h) has an

asymptotic expansion,

Jn(x, h, P, ρ) = Φ(x) +
2∑

j=1

n−j/2qj(x, h, P, ρ)ϕ(x) + o
(
n−1
)
, (19)

where qj(x, h, P, ρ) are polynomials in x ∈ R such that (i) their coefficients are continuous

function of moments of P and ρ and (ii) qj(x, h, P, ρ) = (−1)j+1qj(−x, h, P, ρ) for j = 1, 2.

Similarly, suppose the bootstrap root R∗
n(h) has an Edgeworth expansion,

Jn(x, h, P̂n, ρ̂n) = Φ(x) +
2∑

j=1

n−j/2qj(x, h, P̂n, ρ̂n)ϕ(x) + op
(
n−1
)
, (20)

where Jn(x, h, ·, ·) is as in (7), P̂n is the empirical distribution of the centered residuals

defined in (13), and ρ̂n is the estimator of ρ defined in (12).

The approximations in (19) and (20) are commonly used to show that the bootstrap
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methods provide more accurate approximations than the asymptotic distribution theory; see

Hall (1992) for a textbook reference for the case of i.i.d. data. We next sketch an informal

calculation of the sizes of the ECP of the confidence intervals Cn(h, 1−α) and C∗
n(h, 1−α).

The coverage probability of Cn(h, 1 − α) is equal to Pρ

(
|Rn(h)| ≤ z1−α/2

)
by the def-

initions of Cn(h, 1 − α) and Rn(h) in (10) and (6), respectively. Note that (19) and the

properties of qj(·, h, P, ρ) imply that for any x > 0, we have

Pρ (|Rn(h)| ≤ x) = 2Φ(x)− 1 + n−12q2(x, h, P, ρ)ϕ(x) + o
(
n−1
)
. (21)

Taking x = z1−α/2, we conclude the size of the ECP of Cn(h, 1− α) is O(n−1).

Similarly, the coverage probability of C∗
n(h, 1− α) is equal to Pρ (|Rn(h)| ≤ c∗n(h, 1− α))

by the definitions in (11) and (6). Now, we will argue that

Pρ (|Rn(h)| ≤ c∗n(h, 1− α)) = Pρ (|Rn(h)| ≤ cn(h, 1− α)) + o
(
n−1
)
, (22)

where cn(h, 1 − α) is as in (8). This is sufficient to conclude that the size of the ECP of

C∗
n(h, 1 − α) is o(n−1) since Pρ (|Rn(h)| ≤ cn(h, 1− α)) = 1 − α by definition. Using the

properties of qj(·, h, P̂n, ρ̂n) and (20), we obtain

Pρ

(
|R∗

b,n(h)| ≤ x | Y (n)
)
= 2Φ(x)− 1 + n−12q2(x, h, P̂n, ρ̂n)ϕ(x) + op

(
n−1
)

= 2Φ(x)− 1 + n−12q2(x, h, P, ρ)ϕ(x) + op
(
n−1
)
, (23)

where the last equality uses q2(x, h, P̂n, ρ̂n) = q2(x, h, P, ρ) + op (1). Note that (21) and (20)

looks similar. Taking x = cn(h, 1−α) in (21) and x = c∗n(h, 1−α) in (23), it can be conclude

that c∗n(h, 1− α) = cn(h, 1− α) + op (n
−1), which will imply (22).

The informal explanation presented above suggests that the LP-residual bootstrap can

provide asymptotic refinements when there exist valid Edgeworth expansions as in (19)-(20).

We present in Section 5.2 conditions (Assumption 5.1 and ρ ∈ [−1+a, 1−a], where a ∈ (0, 1))

under which the previous informal discussion can be formalized.

The challenges: Edgeworth expansions as in (19)-(20) are not always available or valid

in the context of AR(1) models. For instance, in the case of the local-to-unity and unit-

root models, the Edgeworth expansion for the least-squares estimate of the AR(1) model

defined in (12) is no longer valid; see Phillips (2023). In this case, alternative asymptotic

approximations were developed to prove asymptotic refinements of the bootstrap, e.g., Park
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(2003, 2006) and Mikusheva (2015). To our knowledge, there are no available theoretical

results about valid Edgeworth expansions for the root Rn(h) defined in (6) that can be

applied directly.

Nevertheless, for stationary AR(1) models (when ρ ∈ [−1 + a, 1− a], a ∈ (0, 1)), asymp-

totically valid Edgeworth expansions were obtained; see Phillips (1977a,b), Bose (1988),

among others. Therefore, we will restrict our analysis to stationary AR(1) models to ob-

tain valid Edgeworth expansions for the root Rn(h) and its bootstrap version R∗
n(h) when

ρ ∈ [−1 + a, 1− a], a ∈ (0, 1), and h is fixed.

5.2 Formal Conditions and Results

This section presents conditions under which the LP-residual bootstrap provides asymptotic

refinements to the confidence interval. Under these conditions, we calculate the sizes of the

ECP for Cn(h, 1− α) and C∗
n(h, 1− α) in Theorems 5.1 and 5.2, respectively.

The following assumption imposes stronger conditions on the distribution of the shocks P

than the ones presented in Assumption 4.1. We use this assumption and ρ ∈ [−1 + a, 1− a]

for some a ∈ (0, 1) to formalize the informal explanation about asymptotic refinements

presented in Section 5.1.

Assumption 5.1.

i) {ut : 1 ≤ t ≤ n} is a sequence of i.i.d. random variables with E[ut] = 0.

ii) ut has a positive continuous density.

iii) E[exut ] ≤ ex
2c2u for all |x| ≤ 1/cu and E[u2t ] ≥ Cσ for some constants cu, Cσ > 0.

Part (i) of Assumption 5.1 imposes stronger conditions over the serial dependence of the

shocks. This assumption is common for theoretical analysis of the asymptotic refinement

of the bootstrap method in autoregressive models. An incomplete list of previous research

that uses this assumption includes Bose (1988), Park (2003, 2006), and Mikusheva (2015).

Parts (ii) and (iii) of Assumption 5.1 are sufficient technical conditions on the distribution

of the shocks P to establish the existence of the Edgeworth expansions presented in (19)-

(20). Part (ii) implies that the distribution Jn(·, h, P, ρ) defined in (7) is continuous and

guarantees that a data-dependent version of the Cramér condition holds, which is a common

condition to guarantee the existence of Edgeworth expansions; see Remark 5.4 for further
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discussion. Part (iii) implies that any sufficiently large number of moments exist and are

uniformly bounded by a function of the constant cu, which is important to guarantee the

Edgeworth expansion for the bootstrap distribution Jn(·, h, P̂n, ρ̂n). Although this condition

is strong, it is not atypical in the literature of the asymptotic refinement of the bootstrap

method with dependent data; for instance, Hall and Horowitz (1996) and Inoue and Shintani

(2006) assume the existence of 33rd and 36th moments, respectively, while Andrews (2002)

assumes that all the moments exist.

We rely on Assumption 5.1, the approach and results presented in Bhattacharya and

Ghosh (1978) and Bhattacharya (1987), and the general framework developed by Götze and

Hipp (1983) to prove the existence of Edgeworth expansions with dependent data. The

framework of Götze and Hipp (1983) requires weakly dependent data and verifying stronger

regularity conditions than the ones needed in the case of i.i.d. data; see Hall (1992) and

Lahiri (2003) for textbook references. Therefore, we restrict our analysis to data-generating

processes with weak dependence (e.g., |ρ| ≤ 1 − a for some a ∈ (0, 1)) in a similar way to

previous research on asymptotic refinements involving dependent data that includes Bose

(1988), Hall and Horowitz (1996), Lahiri (1996), Andrews (2002, 2004), and Inoue and

Shintani (2006). It is an open question whether there exist Edgeworth expansions as in (19)-

(20) for the case of local-to-unity or unit-root models. See Remark 5.6 for further discussion

on alternative methods and available results.

Theorem 5.1. Suppose Assumption 5.1 holds. Fix a given h ∈ N and a ∈ (0, 1). Then, for

any ρ ∈ [−1 + a, 1− a], we have

|Pρ (β(ρ, h) ∈ Cn(h, 1− α))− (1− α)| = O(n−1) (24)

where β(ρ, h) is as in (2) and Cn(h, 1− α) is as in (10).

The ECP of Cn(h, 1−α) has a similar size as the one derived in our informal explanation

in Section 5.1. Similar sizes of the ECP were obtained for symmetrical confidence intervals

in the i.i.d. data case; see Hall (1992) and Horowitz (2001, 2019).

The proof of Theorem 5.1 is presented in Appendix A.3. It uses two main ideas developed

previously in the literature. First, we approximate the distribution Jn(·, h, P, ρ) by another

distribution J̃n(·, h, P, ρ) up to an error of size O (n−1−ϵ) for a fixed ϵ ∈ (0, 1/2); similar

approach has been used in Hall and Horowitz (1996) and Andrews (2002, 2004). Second,

we use that the distribution J̃n(·, h, P, ρ) admits an Edgeworth expansion up to an error of
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size O
(
n−3/2

)
based on the results of Bhattacharya and Ghosh (1978) and Götze and Hipp

(1983, 1994); see Theorem B.2 in Appendix B.3. These two ideas guarantee the existence

of the Edgeworth expansion presented in (19). We then conclude the proof by standard

derivations similar to the one derived in our informal explanation presented in Section 5.1.

The next theorem shows that the LP-residual bootstrap provides asymptotic refinements

to the confidence intervals. In other words, the size of the ECP of our bootstrap confidence

interval defined in (11) for β(ρ, h) is o(n−1).

Theorem 5.2. Suppose Assumption 5.1 holds. Fix a given h ∈ N and a ∈ (0, 1). Then, for

any ρ ∈ [−1 + a, 1− a] and ϵ ∈ (0, 1/2), we have

|Pρ (β(ρ, h) ∈ C∗
n(h, 1− α))− (1− α)| = o

(
n−(1+ϵ)

)
, (25)

where β(ρ, h) is as in (2) and C∗
n(h, 1− α) is as in (11).

Theorem 5.2 presents the size of the ECP of the confidence interval C∗
n(h, 1−α) in (25).

This is similar to the one derived in our informal explanation in Section 5.1, but it is typically

larger than those obtained for the ECP of symmetrical confidence intervals using bootstrap

methods in the i.i.d. data case; see Hall (1992) and Horowitz (2001, 2019).

The proof of Theorem 5.2 is presented in Appendix A.4. It relies on two claims: the

existence of the Edgeworth expansion for the distribution Jn(·, h, P, ρ) and the existence of

constants C1 and C2 such that Pρ(|∆n| > C1n
−(1+ϵ)) ≤ C2n

−(1+ϵ), where ∆n = c∗n(h, 1−α)−
cn(h, 1− α), and cn(h, 1− α) and c∗n(h, 1− α) are defined in (8) and (15), respectively. We

next sketch the proof based on those two claims. We can derive

Pρ (β(ρ, h) ∈ C∗
n(h, 1− α)) = Pρ (|Rn(h)| ≤ c∗n(h, 1− α))

= Pρ

(
|Rn(h)| ≤ cn(h, 1− α) + ∆n, |∆n| ≤ C1n

−(1+ϵ)
)
+O

(
n−(1+ϵ)

)
= 1− α +O

(
n−(1+ϵ)

)
,

where the last equality follows from the existence of the Edgeworth expansion for the distri-

bution Jn(·, h, P, ρ) (our first claim), which implies

Pρ

(
|Rn(h)| ≤ cn(h, 1− α) +O

(
n−(1+ϵ)

))
= 1− α +O

(
n−(1+ϵ)

)
.

Note that the first claim follows from Theorem 5.1. To prove our second claim, we first show

that there is an event En such that (i) Jn(·, h, P̂n, ρ̂n) has an Edgeworth expansion as in (20)
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conditional on En and (ii) the probability of the complement of En is equal to O
(
n−(1+ϵ)

)
for any ϵ ∈ (0, 1/2); see Lemma B.5 in Appendix B.1. We then follow standard arguments

in the literature to prove this claim. Finally, note that O(n−(1+ϵ)) for any ϵ ∈ (0, 1/2) is

equivalent to o(n−(1+ϵ)) for any ϵ ∈ (0, 1/2), which is the error stated in Theorem 5.2.

Remark 5.1. The bootstrap methods proposed in Hall and Horowitz (1996) and Andrews

(2002) can be adapted for the construction of confidence intervals for the impulse response

β(h, ρ) defined in (2). Four points based on their framework and results deserve further dis-

cussion. First, their bootstrap method consists of the nonoverlapping block bootstrap scheme

(Carlstein (1986)) and overlapping block bootstrap (Kunsch (1989)). Second, they show

that their bootstrap methods provide asymptotic refinements to the critical values of t-tests

based on generalized method of moments (GMM) estimators θ̂T and weakly dependent data

{Zt : 1 ≤ t ≤ n}. One of their main conditions is that the series of moment functions

{g(Zt, θ) : t ≥ 1} are uncorrelated beyond some finite lags, i.e. for some κ > 0 we have

E[g(Zt, θ)g(Zs, θ)
′] = 0 for any t, s ≥ 1 such that |t − s| > κ. Third, the LP estimator

β̂n(h) defined in (3) can be presented as a GMM estimator using the following dependent

data {Zt = (yt−1, yt, yt+h) : 1 ≤ t ≤ n} and moment function: g(yt+h, xt, θ) = (yt+h − θxt)xt,

where xt = (yt, yt−1)
′. Then, we can invoke their results and use their bootstrap methods but

only for the case of |ρ| < 1 and under additional assumptions. Note that their main condition

can be verified with κ = h. Fourth, we can construct confidence intervals for β(ρ, h) based

on their asymptotic distribution theory.

Remark 5.2. As we mentioned in Remark 5.1, we can use the bootstrap methods presented

in Hall and Horowitz (1996) and Andrews (2002, 2004) to construct confidence intervals for

β(ρ, h) since the LP estimator β̂n(h) defined in (3) can be presented as a GMM estimator.

Their results provide sizes of the ECP of these confidence intervals that are qualitatively

similar to the one found in Theorem 5.2.

Remark 5.3. The size of the ECP of C∗
per−t,n(h, 1 − α) is O(n−1). We presented and dis-

cussed the equal-tailed percentile-t confidence interval C∗
per−t,n(h, 1 − α) in Remark 4.1. To

compute the size of its ECP, we can use the existence of the Edgeworth expansions presented

in (19)-(20) and Theorem 5.2 in Hall (1992). The size of the ECP of C∗
per−t,n(h, 1 − α) is

similar to the one obtained in (24) for the ECP of Cn(h, 1 − α); therefore, the LP-residual

bootstrap does not provide asymptotic refinement for equal-tailed percentile-t confidence in-

tervals. Similar conclusions were obtained for the case of i.i.d. data; see Hall (1992) and

Horowitz (2001, 2019).
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Remark 5.4. We use part (ii) of Assumption 5.1 to verify that a dependent-data version

of the Cramer condition required in Götze and Hipp (1983) holds, which is an important

condition for the existence of the Edgeworth expansion in the dependent-data case. However,

verifying that condition is quite difficult in general, as pointed out by Hall and Horowitz

(1996) and Götze and Hipp (1994), among others. Therefore, we proceed in two steps based

on the results by Götze and Hipp (1994) that propose simple and verifiable conditions to

guarantee the conditions required by Götze and Hipp (1983), including the dependent-data

version of the Cramer condition. We first approximate the distribution Jn(·, h, P, ρ) by a

distribution J̃n(·, h, P, ρ). We then use part (ii) of Assumption 5.1 to verify the conditions

required in Theorem 1.2 of Götze and Hipp (1994), which guarantee the existence of Edge-

worth expansion for the distribution J̃n(·, h, P, ρ).

Remark 5.5. For strictly stationary data-generating processes, the results in Theorems 5.1

and 5.2 can be extended to the family of vector autoregressive (VAR) models that satisfy

similar assumptions to the ones presented in Assumption 5.1, which are stronger than As-

sumptions 1 and 2 in Montiel Olea and Plagborg-Møller (2021). These extensions can be

shown by verifying the conditions required in Götze and Hipp (1994). We leave the details

of a formal proof for the VAR models for future research.

Remark 5.6. An alternative method for asymptotically approximating a finite sample dis-

tribution is the stochastic embedding and strong approximation principle used in Park (2003,

2006) and Mikusheva (2015). Using this method in the local-to-unit asymptotic framework for

the AR(1) model, Mikusheva (2015) showed that the grid bootstrap version of the t-statistic

approximates its finite sample distribution up to an error of size o(n−1/2). It is an open

question whether these techniques can be adapted to show that LP-residual bootstrap provides

asymptotic refinements to the confidence intervals when ρ = 1.

6 Simulation Study

We examine the finite sample performance of C∗
n(h, 1 − α) defined in (11) using different

data-generating processes. We consider a sample size n = 95, which is the median sample

size based on 71 papers that have utilized the LP approach; see Herbst and Johannsen

(2024). Additionally, we examine other confidence intervals presented in the paper.
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6.1 Monte Carlo Design

We use four designs for the distribution of the shocks {ut : 1 ≤ t ≤ n} and two values for the

parameter ρ ∈ {0.95, 1} in our Monte Carlo simulation. The shocks are defined according to

the GARCH(1,1) model:

ut = τtvt, τ 2t = ω0 + ω1u
2
t−1 + ω2τ

2
t−1, vt are i.i.d. ,

where the distribution of vt and the parameter vector (ω0, ω1, ω2) are specified as follows:

Design 1: vt ∼ N(0, 1), ω0 = 1, and ω1 = ω2 = 0.

Design 2: vt ∼ N(0, 1), ω0 = 0.05, ω1 = 0.3, and ω2 = 0.65.

Design 3: vt ∼ t4/
√
2, ω0 = 1, and ω1 = ω2 = 0.

Design 4: vt|Bt = j ∼ N(mj, σ
2
j ), where Bt ∈ {0, 1}, Bt = 1 with probability p = 0.25, m0 =

2/σ2, m1 = −6/σ2, σ0 = 0.5/σ2, σ1 = 2/σ2, and σ
2
2 = p(m2

1 + σ1) + (1 − p)(m2
0 + σ0),

ω0 = 0.05, ω1 = 0.3, and ω2 = 0.65.

We consider nine different confidence intervals for each design and each value of ρ. All

our confidence intervals use the HC standard errors ŝn(h) defined in (4). Additionally, we

consider alternative HC standard errors ŝj,n(h) defined as

ŝj,n(h) ≡

(
n−h∑
t=1

ût(h)
2

)−1/2(n−h∑
t=1

ξ̂j,t(h)
2ût(h)

2

)1/2(n−h∑
t=1

ût(h)
2

)−1/2

,

for j = 2, 3, where ξ̂2,t(h)
2 = ξ̂t(h)

2/(1− Ph,tt) and ξ̂3,t(h)
2 = ξ̂t(h)

2/(1− Ph,tt)
2. We use the

projection matrix Ph = Xh(X′
hXh)

−1X′
h, where Xh is a matrix with row elements equal to

(ût(h), yt−1) for t = 1, . . . , n− h. The confidence intervals that we use are listed below.

1. RB: confidence interval as in (11) based on the LP-residual bootstrap.

2. RBper−t: equal-tailed percentile-t confidence interval as in (18). It is based on the

LP-residual bootstrap and discussed in Remark 4.1.

3. RBhc3: confidence interval as in (11) but using ŝ3,n(h) and c∗3,n(h, 1 − α) instead of

ŝn(h) and c∗n(h, 1 − α), where c∗3,n(h, 1 − α) is computed as in Section 3.1 but using

ŝ∗3,n(h) instead of ŝ∗n(h).
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4. WB: confidence interval as in (11) but using cwb,∗
n (h, 1 − α) instead of c∗n(h, 1 − α),

where cwb,∗
n (h, 1− α) is based on the LP-wild bootstrap; see Remark 3.2.

5. WBper−t: equal-tailed percentile-t confidence interval as in (18) but using qwb,∗
n (h, α0)

instead of q∗n(h, α0), where q
wb,∗
n (h, α0) is based on the LP-wild bootstrap discussed in

Remark 3.2.

6. GBLR: confidence interval based on the grid bootstrap presented in Section 3.3 in

Mikusheva (2012). It uses the LR statistic.

7. AA: standard confidence interval as in (10).

8. AAhc2: standard confidence interval as in (10) but using ŝ2,n(h) instead of ŝn(h).

9. AAhc3: standard confidence interval as in (10) but using ŝ3,n(h) instead of ŝn(h).

6.2 Discussion and Results

In all the designs, the shocks have zero mean and variance one. Designs 1-2 verify Assumption

4.1 presented in Section 4. Design 1 also verifies Assumption 4.2 due to Proposition B.1 in

Appendix B.2. Assumption 4.2 can be tedious to verify in general since it involves computing

a probability for all the parameters ρ in the parameter space and taking their infimum. In

contrast, designs 3-4 do not verify all the parts of Assumption 4.1. Design 3 considers shocks

without a fourth moment, i.e., it does not verify part (iv) of Assumption 4.1, which was a

regularity condition. Design 4 considers a distribution of the shocks (GARCH errors with

asymmetric v and nonzero skewness) that lie outside the class of conditional heteroskedastic

processes that we consider in this paper, i.e., it does not verify part (ii) of Assumption 4.1.

As we discussed in Remark 2.1, part (ii) of Assumption 4.1 was a sufficient condition for the

validity of the HC standard errors ŝn(h) in the construction of confidence intervals.

Tables 1 and 2 report the coverage probabilities (in %) of our simulations. Columns are

labeled as the confidence intervals we specified in Section 6.1. For all the designs on the

distribution of the shock and values of ρ, we use 5000 simulations to generate data with a

sample size n = 95 based on the AR(1) model (1). In each simulation, we compute the nine

confidence intervals described above for horizons h ∈ {1, 6, 12, 18}. The confidence intervals

have a nominal level equal to 1−α = 90%. The bootstrap critical values are computed using
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ρ h RB RBper−t RBhc3 WB WBper−t GBLR AA AAhc2 AAhc3

Design 1: Gaussian i.i.d. shocks
0.95 1 90.04 89.60 90.08 90.38 90.32 90.38 88.26 89.12 89.60

6 89.36 88.98 89.38 90.46 90.22 90.38 85.00 85.58 86.44
12 88.12 86.96 88.08 89.60 88.28 90.38 83.78 84.44 85.34
18 87.96 86.08 87.88 89.46 88.08 90.38 84.44 85.16 85.86

1.00 1 90.20 89.80 90.30 90.48 90.34 89.46 88.30 88.90 89.66
6 89.80 89.44 89.80 90.68 90.22 89.46 83.54 84.42 85.28
12 87.92 87.60 87.90 88.78 89.02 89.46 80.32 81.30 81.94
18 86.22 84.76 86.22 87.02 86.36 89.46 78.34 79.16 79.98

Design 2: Gaussian GARCH shocks
0.95 1 88.86 89.00 89.40 90.18 90.02 85.94 86.84 88.10 89.16

6 87.94 88.00 88.26 90.12 90.74 85.94 83.64 84.52 85.60
12 87.08 85.72 87.28 88.72 88.18 85.94 82.96 83.90 84.88
18 86.36 84.36 86.40 87.98 86.94 85.94 82.76 83.44 84.38

1.00 1 88.64 88.82 89.14 89.96 89.94 88.38 86.72 87.84 88.90
6 88.96 88.52 89.08 90.76 90.96 88.38 82.34 83.76 84.52
12 86.64 86.08 86.60 88.56 88.68 88.38 79.14 80.46 81.32
18 84.90 83.74 84.78 86.56 86.52 88.38 76.64 77.74 78.70

Table 1: Coverage probability (in %) of confidence intervals for β(ρ, h) with a nominal level of
90% and n = 95. 5,000 simulations and 1,000 bootstrap iterations.

B = 1000 as described in Remark 3.1. We summarize our findings from the simulations

below.

Five features of Table 1 deserve discussion. First, it shows that our recommended con-

fidence interval RB has a coverage probability closer to 90% than the confidence intervals

AA, AAhc2, and AAhc3 for all the designs 1-2, values of ρ, and horizons h, with some few

exceptions. The lowest coverage probability of RB, AA, AAhc2, and AAhc3 are 85%, 77%,

78%, and 79%, respectively, and occur when ρ = 1 and horizon h = 18. Second, RB and

RBhc3 have better performance than RBper−t, especially when ρ = 1 and the horizon is a

significant fraction of the sample size (h ∈ {12, 18}). Third, WB and WBper−t have larger

coverage probability than RB for all the designs 1-2, values of ρ, and horizons h, with some

few exceptions. The larger coverage of WB and WBper−t is associated with a larger median

length of their confidence intervals, as we reported in Table E.1 in Online Supplemental Ap-

pendix E. Fourth, AAhc3 presents a coverage probability closer to 90% and larger than AA

and AAhc2 for all the designs 1-2, values of ρ, and horizons h. This finding suggests that

using ŝ3,n(h) instead of ŝn(h) can improve the coverage probability of the confidence interval;

however, confidence intervals based on bootstrap methods (e.g., RB and WBper−t) report

coverage probability closer to 90%. Fifth, GBLR has a coverage probability close to 90% on
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ρ h RB RBper−t RBhc3 WB WBper−t GBLR AA AAhc2 AAhc3

Design 3: t-student i.i.d. shocks
0.95 1 90.00 90.08 90.36 90.52 90.32 90.06 88.04 89.24 90.26

6 89.08 88.48 89.28 89.76 89.64 90.06 84.04 85.40 86.66
12 87.74 86.18 87.90 88.46 87.42 90.06 82.78 84.24 85.46
18 88.08 85.38 88.26 89.12 87.52 90.06 83.36 84.80 86.20

1.00 1 89.96 89.88 90.16 90.36 89.98 90.44 87.74 88.82 90.16
6 89.78 88.60 89.84 90.52 89.84 90.44 82.88 84.54 85.78
12 87.56 86.82 87.64 88.40 88.22 90.44 79.04 80.30 81.56
18 85.64 84.40 86.00 86.80 86.24 90.44 77.50 78.84 80.22

Design 4: mixture-of-gaussian GARCH shocks
0.95 1 89.00 89.86 89.32 88.80 89.60 87.82 86.38 87.20 87.88

6 87.90 90.62 88.14 89.12 92.04 87.82 84.30 85.30 86.18
12 84.14 86.64 84.00 85.58 87.98 87.82 80.70 81.52 82.32
18 83.48 84.70 83.66 85.32 86.88 87.82 80.46 81.40 82.56

1.00 1 88.84 90.24 89.04 88.98 89.70 88.02 86.60 87.24 88.00
6 88.24 91.26 88.50 89.62 92.66 88.02 82.78 83.82 84.64
12 84.96 88.54 85.08 86.74 89.86 88.02 77.40 78.32 79.50
18 82.30 84.62 82.34 83.90 86.30 88.02 74.18 75.28 76.14

Table 2: Coverage probability (in %) of confidence intervals for β(ρ, h) with a nominal level of
90% and n = 95. 5,000 simulations and 1,000 bootstraps iterations.

design 1 (i.i.d. shocks), while it has some distortions on design 2 that are larger on ρ = 0.95.

As we mentioned in Remark 4.2, it is unknown if the grid bootstrap is valid for design 2.

The coverage probability of GBLR is constant across horizons because the LR statistic is

invariant to monotonic transformations; see Section 4.3 and footnote 6 on Mikusheva (2012)

for more details.

Table 2 presents results for designs 3-4. Our findings for design 3 are qualitatively similar

to Table 1, which was discussed above. This suggests that failing part (iv) of Assumption

4.1 (a regularity condition) does not have a major effect on the coverage probability of

the confidence intervals that we considered. In contrast, design 4 shows that some of our

qualitative findings can change if we fail to verify part (ii) of Assumption 4.1. This result is

consistent with existing theory since this assumption was a sufficient condition for the validity

of confidence intervals that use HC standard errors ŝn(h); see Remark 2.1. In particular,

RBper−t has a coverage probability closer to 90% and larger than RB and RBhc3. The small

sample size (n = 95) does not explain the findings for design 4. We obtain similar results

for a sample size n = 240 in Table E.3 in Online Supplemental Appendix E.

Finally, Table E.2 in Online Supplemental Appendix E reports the statistical power of

the confidence intervals specified in Section 6.1. Here, we refer by statistical power to the
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coverage probabilities (in %) of (size-adjusted) confidence intervals for parameters different

than the true one. In this sense, a low coverage probability of a confidence interval is

desirable. We find all the confidence intervals have coverage probability around 80% on

horizon h = 1 and designs 1, 2, and 3, which suggests they have statistical power at h = 1.

We also notice that RBper−t, WBper−t and GBLR have a coverage probability strictly lower

than 90% for horizon h = 6 and designs 1, 2, and 3. Moreover, they have a lower coverage

probability than all the other confidence intervals. Finally, all the confidence intervals have

coverage probability above 90% on design 4, with the exception of GBLR for horizon h = 1.

7 LP-Residual Bootstrap for VAR Models

This section describes the LP-residual bootstrap method to construct confidence intervals

for a scalar function of impulse responses of VAR(p) models, where p denotes the number of

lags. More concretely, we propose the confidence interval in (26) for ν ′βh,i, where βh,i ∈ Rk

is the vector containing all the impulse response coefficients of the reduced-form shocks in

the variable i at h periods in the future. Here, ν ∈ Rk \ {0} is a user-specified vector, e.g.,

ν = ej (the j-th unit vector) implies ν ′βh,i is the impact of the j-th reduced-form shock in

the variable i at h periods in the future.

The confidence interval for ν ′βh,i is defined as

C∗
n(h, 1−α) ≡

[
ν ′β̂i,n(h)− c∗n(h, 1− α) ŝi,n(h, ν), ν

′β̂i,n(h) + c∗n(h, 1− α) ŝi,n(h, ν)
]
, (26)

where β̂i,n(h), ŝi,n(h, ν), and c
∗
n(h, 1− α) are defined in (27), (28), and (31), respectively.

Let {yt ∈ Rk : 1 ≤ t ≤ n} be the available time-series data. Suppose the data have been

demeaned. Denote Xt = (y′t−1, . . . , y
′
t−p)

′ for all t = p + 1, . . . , n. Let β̂i,n(h) be obtained

from an OLS regression between yi,t+h and (y′t, X
′
t),

yi,t+h = β̂i,n(h)
′yt + γ̂i,n(h)Xt + ξ̂i,t(h) . (27)

Let ŝi,n(h, ν) be the standard error for ν ′β̂i,n(h) defined by

ŝi,n(h, ν) =
1

n− h− p

{
ν ′Σ̂(h)−1

(
n−h∑

t=p+1

ξ̂i,t(h)
2ût(h)ût(h)

′

)
Σ̂(h)−1ν

}1/2

, (28)
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where

ût(h) = yt − Â(h)Xt , Â(h) =

(
n−h∑

t=p+1

ytX
′
t

)(
n−h∑

t=p+1

XtX
′
t

)−1

and

Σ̂(h) =
1

n− h− p

n−h∑
t=p+1

ût(h)ût(h)
′ .

Finally, let c∗n(h, 1− α) be the bootstrap critical value involving the following steps:

Step 1: Estimate a VAR(p) model with the data Y (n) using linear regression,

yt = ÂnXt + ût , t = p+ 1, . . . , n

where

Ân =

(
n∑

t=p+1

ytX
′
t

)(
n∑

t=p+1

XtX
′
t

)−1

, (29)

and compute the centered residuals{
ũt ≡ ût −

1

n− p

n∑
t=p+1

ût : p+ 1 ≤ t ≤ n

}
. (30)

Step 2: Generate B new samples of size n using (29) and (30). Define the sample as

y∗b,t =

p∑
ℓ=1

Ân,ℓ y
∗
b,t−ℓ + u∗b,t , t = p+ 1, . . . , n ,

where the initial p observations (y∗b,1, . . . , y
∗
b,p) are drawn at random from the n− p+1

blocks of p consecutive observations in the original data. Here, Ân = (Ân,1, . . . , Ân,p)

are matrices estimated in (29) and {u∗b,t : 1 ≤ t ≤ n} is a random sample from

the empirical distribution of the centered residuals defined in (30). The new sample

{y∗b,t : 1 ≤ t ≤ n} is called the bootstrap sample.

Step 3: Compute β̂∗
b,i,n(h) and ŝ

∗
b,i,n(h) as in (27) and (28) using the lag-augmented LP regres-

sion and the bootstrap sample {y∗b,t : 1 ≤ t ≤ n} for each b = 1, . . . , B. Define

R∗
b,n(h, ν) =

ν ′β̂∗
b,i,n(h)− ν ′βi(Ân, h)

ŝ∗b,i,n(h, ν)
, b = 1, . . . , B
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where βi(A, h) ∈ Rk is the impulse response of all reduced-form shocks in the variable

i at horizon h implied by the VAR(p) model with coefficients A = (A1, . . . , Ap). Here,

Ân is as in (29).

Step 4: Compute the 1− α quantile of the B draws of R∗
b,n(h, ν). Denote this by

c∗n(h, 1− α) ≡ inf

{
u ∈ R :

1

B

B∑
b=1

I{|R∗
b,n(h, ν)| ≤ u} ≥ 1− α

}
. (31)

The theoretical properties of the bootstrap confidence interval defined in (26) are un-

known for general VAR models. However, Monte Carlo simulations presented in Online Sup-

plemental Appendix E.1 suggest that confidence intervals based on the LP-residual bootstrap

perform better in terms of coverage probability than those based on first-order asymptotic

theory. Remarks 4.4 and 5.5 provide further discussion on how to extend some of the results

presented in this paper to general VAR models.

Remark 7.1. Montiel Olea and Plagborg-Møller (2021) proposed a different bootstrap confi-

dence interval for the impulse response coefficients of VAR(p) models. As we discussed in Re-

mark 3.2, they use a wild bootstrap procedure —which we refer to as the LP wild bootstrap—

to define the bootstrap shocks used to generate the bootstrap sample with an estimated VAR

model (similar to Step 2 above). They use the LP wild bootstrap to construct equal-tailed

percentile-t confidence intervals that differ from the symmetric percentile-t confidence inter-

vals defined in (26), which we recommend for the same reasons presented in Remark 3.3

and based on our theoretical results for the AR(1) model. To our knowledge, the theoret-

ical properties of the LP wild bootstrap procedure and the confidence intervals proposed by

Montiel Olea and Plagborg-Møller (2021) remain unknown. We include their recommended

confidence intervals in the simulations presented in Online Supplemental Appendix E.1.

8 Concluding Remarks

This paper contributes to a growing literature on confidence interval construction for im-

pulse response coefficients based on the local projection approach. Specifically, we propose

the LP-residual bootstrap method to construct confidence intervals for the impulse response

coefficients of AR(1) models at intermediate horizons. We prove two theoretical properties

of this method: uniform consistency and asymptotic refinements. For a large class of AR(1)
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models that allow for a unit root, conditional heteroskedasticity of unknown form, and mar-

tingale difference shocks, we show that the proposed confidence interval C∗
n(h, 1−α) defined

in (11) has an asymptotic coverage probability equal to its nominal level 1 − α uniformly

over the parameter space (e.g., ρ ∈ [−1, 1]) and a wide range of intermediate horizons. For a

restricted class of AR(1) models (e.g., |ρ| ≤ 1− a where a ∈ (0, 1) and i.i.d. shocks with posi-

tive continuous density), we demonstrate that the error in coverage probability of C∗
n(h, 1−α)

has size o(n−1), that is, the LP-residual bootstrap provides asymptotic refinements to the

confidence intervals.

This paper considered the AR(1) model as the first step in understanding the theoretical

properties of the LP-residual bootstrap. Three possible directions exist for future research.

First, the uniform consistency of the LP-residual bootstrap method is an open question for

the general vector auto-regressive (VAR) model. This bootstrap method is described in

Section 7. Second, the asymptotic refinement property of this method is unknown for the

unit-root model (ρ = 1) or general VAR models. Third, future work is needed to prove the

uniform consistency of the LP-wild bootstrap discussed in Remark 3.2.

A Proofs of Result in Main Text

A.1 Proof of Theorem 4.1

We prove a stronger result:

sup
|ρ|≤1

Pρ

(
sup
h≤hn

sup
|ρ̃|≤1

sup
x∈R

|Jn(x, h, P, ρ̃)− Jn(x, h, P̂n, ρ̂n)| > ϵ

)
→ 0 as n→ ∞ ,

which is sufficient to conclude (16). The proof has three steps.

Step 1: Let En,1 = {g(ρ, n) n1/2 |ρ̂n − ρ| > M}, En,2 = {|n−1
∑n

t=1 ũ
2
t − σ2| > σ2/2}, and

En,3 = {n−1
∑n

t=1 ũ
4
t > K̃4} be events, where M and K̃4 are constants defined next. Fix

η > 0. We use Lemma B.1 to guarantee the existence of M , K̃4, and N0 = N0(η) such that

Pρ(En,j) < η/3 for j = 1, 2, 3, n ≥ N0 and ρ ∈ [−1, 1]. Define En = Ec
n,1 ∩ Ec

n,2 ∩ Ec
n,3. By

construction Pρ(En) > 1− η for n ≥ N0 and for any ρ ∈ [−1, 1].

Step 2: Conditional on the event En, we have |ρ̂n−ρ| ≤Mn−1/2/g(ρ, n) for n ≥ N0 and for

any ρ ∈ [−1, 1]. Therefore, conditional on the event En, we can use Lemma B.2 to conclude
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the existence of M̃ and N1 ≥ N0 such that |ρ̂n| ≤ 1 + M̃/n for all n ≥ N1. Note also that

conditional on the event En, we have that distribution P̂n of the centered residuals defined

in (13) verifies Assumption B.1 taking K4 = M , σ = σ2/2, and σ = 3σ2/2, i.e., P̂n ∈ Pn,0,

where Pn,0 is defined in Appendix B.2.

Step 3: We use Theorem B.1 taking M = M̃ . This implies that for any ϵ > 0, there

exists N2 = N2(ϵ, η) ≥ N1 such that supx∈R |Jn(x, h, Pn, ρ)− Φ(x)| < ϵ/2 , for any n ≥ N2,

|ρ| ≤ 1 + M̃/n, h ≤ hn ≤ n and hn = o (n), and Pn ∈ Pn,0. Conditional on En, we have

P̂n ∈ Pn,0 due to Step 2, then

sup
h≤hn

sup
x∈R

∣∣∣Jn(x, h, P̂n, ρ̂n)− Φ(x)
∣∣∣ < ϵ/2 , (A.1)

for any n ≥ N2, hn ≤ n and hn = o (n). By (9) there exists N3 ≥ N2 such that

sup
h≤hn

sup
ρ̃∈[−1,1]

sup
x∈R

|Jn(x, h, P, ρ̃)− Φ(x)| < ϵ/2 ,

for any n ≥ N3, hn ≤ n, and hn = o (n). Therefore, conditional on the event En and using

triangular inequality, we conclude that

sup
h≤hn

sup
ρ̃∈[−1,1]

sup
x∈R

∣∣∣Jn(x, h, P, ρ̃)− Jn(x, h, P̂n, ρ̂n)
∣∣∣ < ϵ ,

for any n ≥ N3, hn ≤ n, and hn = o (n). Since Pρ(En) ≥ 1 − η for any ρ ∈ [−1, 1], the

previous conclusion is equivalent to

sup
ρ∈[−1,1]

P

(
sup
h≤hn

sup
ρ̃∈[−1,1]

sup
x∈R

∣∣∣Jn(x, h, P, ρ̃)− Jn(x, h, P̂n, ρ̂n)
∣∣∣ < ϵ

)
≥ 1− η ,

for any n ≥ N3, hn ≤ n and hn = o (n), which concludes the proof of the theorem.

A.2 Proof of Theorem 4.2

By Lemma B.3, for any ϵ > 0, there exists N0 = N0(ϵ) such that

Pρ

(
z1−α/2−ϵ/2 ≤ c∗n(h, 1− α) ≤ z1−α/2+ϵ/2

)
≥ 1− ϵ , (A.2)
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for any n ≥ N0, ρ ∈ [−1, 1] and any h ≤ hn ≤ n and hn = o (n). Assumptions 4.1 and 4.2

guarantee (9); therefore, there exist N1 ≥ N0 such that

Pρ

(
|Rn(h)| ≤ z1−α/2+ϵ/2

)
≤ 1−α+2ϵ and Pρ

(
|Rn(h)| ≤ z1−α/2−ϵ/2

)
≥ 1−α−2ϵ , (A.3)

for any n ≥ N1, ρ ∈ [−1, 1] and any h ≤ hn ≤ n and hn = o (n). Consider the derivation

Pρ (β(ρ, h) ∈ C∗
n(h, 1− α)) = Pρ (|Rn(h)| ≤ c∗n(h, 1− α))

= Pρ

(
|Rn(h)| ≤ c∗n(h, 1− α), c∗n(h, 1− α) > z1−α/2+ϵ/2

)
+ Pρ

(
|Rn(h)| ≤ c∗n(h, 1− α), c∗n(h, 1− α) ≤ z1−α/2+ϵ/2

)
≤ Pρ

(
c∗n(h, 1− α) > z1−α/2+ϵ/2

)
+ Pρ

(
|Rn(h)| ≤ z1−α/2+ϵ/2

)
≤ ϵ+ 1− α + 2ϵ ,

where the last inequality follows by (A.2) and (A.3). Similarly, we obtain the inequality

Pρ

(
|Rn(h)| ≤ z1−α/2−ϵ/2

)
≤ Pρ (β(ρ, h) ∈ C∗

n(h, 1− α)) + Pρ

(
c∗n(h, 1− α) < z1−α/2−ϵ/2

)
,

which implies that Pρ (β(ρ, h) ∈ C∗
n(h, 1− α)) ≥ 1 − α − 2ϵ − ϵ. We conclude that for any

n ≥ N1, ρ ∈ [−1, 1] and any h ≤ hn ≤ n and hn = o (n), we have

|Pρ (β(ρ, h) ∈ C∗
n(h, 1− α))− (1− α)| ≤ 3ϵ ,

which completes the proof of Theorem 4.2.

A.3 Proof of Theorem 5.1

We first show that Jn(x, h, P, ρ) admits a valid Edgeworth expansion, that is

sup
x∈R

∣∣∣∣∣Jn(x, h, P, ρ)−
(
Φ(x) +

2∑
j=1

n−j/2qj(x, h, P, ρ)ϕ(x)

)∣∣∣∣∣ = O
(
n−1−ϵ

)
(A.4)

for some ϵ ∈ (0, 1/2), where qj(x, h, P, ρ) are polynomials on x with coefficients that are

continuous functions of the moments of P (up to order 12) and ρ. Furthermore, we have

q1(x, h, P, ρ) = q1(−x, h, P, ρ) and q2(x, h, P, ρ) = −q2(−x, h, P, ρ).
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To show (A.4), we first use Lemma B.4 to approximate Jn(x, h, P, ρ) by J̃n(x, h, P, ρ),

sup
x∈R

|Jn(x, h, P, ρ)− J̃n(x, h, P, ρ)| = Dn +O
(
n−1−ϵ

)
,

for some ϵ ∈ (0, 1/2), where

Dn = sup
x∈R

∣∣∣J̃n(x+ n−1−ϵ, h, P, ρ)− J̃n(x− n−1−ϵ, h, P, ρ)
∣∣∣ .

Due to Theorem B.2, we can conclude Dn = O (n−1−ϵ). We then use Theorem B.2 to

approximate J̃n(x, h, P, ρ) by a valid Edgeworth expansion,

sup
x∈R

∣∣∣∣∣J̃n(x, h, P, ρ)−
(
Φ(x) +

2∑
j=1

n−j/2qj(x, h, P, ρ)ϕ(x)

)∣∣∣∣∣ = O
(
n−3/2

)
.

Note that we can use Theorem B.2 since Assumption 5.1 implies Assumption B.2 and the

distribution J̃n(x, h, P, ρ) that we obtain from Lemma B.4 satisfy the required conditions.

We conclude (A.4) by triangular inequality. The polynomials qj that appear in (A.4) are the

polynomials in the Edgeworth expansion of J̃n(x, h, P, ρ).

Now, we show that Pρ (|Rn(h)| ≤ x) also admits an asymptotic approximation, that is

sup
x∈R

∣∣Pρ (|Rn(h)| ≤ x)−
(
2Φ(x)− 1 + 2n−1q2(x, h, P, ρ)ϕ(x)

)∣∣ = O
(
n−1−ϵ

)
, (A.5)

where q2(x, h, P, ρ) and ϵ ∈ (0, 1/2) are defined in (A.4). Note that (24) follows from (A.5)

since we can write (24) as follows

∣∣Pρ

(
|Rn(h)| ≤ z1−α/2

)
− (1− α)

∣∣ = O
(
n−1
)
,

and the previous expression is what we obtain taking x = z1−α/2 in (A.5), where we used

that 1− α = 2Φ(z1−α/2)− 1 holds by definition of z1−α/2.

To show (A.5), we first write

Pρ (|Rn(h)| ≤ x) = Jn(x, h, P, ρ)− Jn(−x, h, P, ρ) + rn(x) ,

where rn(x) = Pρ (Rn(h) = −x). We then use (A.4) to approximate Jn(·, h, P, ρ) and the
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properties of the polynomials qj(·, h, P, ρ) to obtain the following approximation

sup
x∈R

∣∣Pρ (|Rn(h)| ≤ x)−
(
2Φ(x)− 1 + 2n−1q2(x, h, P, ρ)ϕ(x) + rn(x)

)∣∣ = O
(
n−1−ϵ

)
.

Finally, supx∈R rn(x) = O (n−1−ϵ) since rn(x) ≤ Pρ (Rn(h) ∈ (−x− n−1−ϵ,−x]) and (A.4)

holds. We use this in the previous expression to complete the proof of (A.5).

A.4 Proof of Theorem 5.2

The proof has two parts. In the first part we assume that P (|∆n| > C1n
−1−ϵ) ≤ C2n

−1−ϵ for

some constants C1 and C2, where ∆n = c∗n(h, 1− α)− cn(h, 1− α). We use this assumption

to prove the theorem with an error of size O(n−(1+ϵ)) for any ϵ ∈ (0, 1/2), which is sufficient

to conclude. In the second part, we prove the assumption of the first part.

Part 1: By (11), we have Pρ (β(ρ, h) ∈ C∗
n(h, 1− α)) = Pρ (|Rn(h)| ≤ c∗n(h, 1− α)). We

can write this term as the sum of Pρ (|Rn(h)| ≤ cn(h, 1− α) + ∆n, |∆n| ≤ C1n
−1−ϵ) and

Pρ (|Rn(h)| ≤ cn(h, 1− α) + ∆n, |∆n| > C1n
−1−ϵ). We conclude Pρ (β(ρ, h) ∈ C∗

n(h, 1− α))

is equal to

Pρ

(
|Rn(h)| ≤ cn(h, 1− α) + ∆n, |∆n| ≤ C1n

−1−ϵ
)
+O

(
n−1−ϵ

)
.

By (A.5) in the proof of Theorem 5.1, we have

Pρ

(
|Rn(h)| ≤ x+ zn−1−ϵ

)
= Pρ (|Rn(h)| ≤ x) +O

(
n−1−ϵ

)
for z = −C1, C1 and any x ∈ R. Since

Pρ

(
|Rn(h)| ≤ x+∆n, |∆n| ≤ C1n

−1−ϵ
)
≤ Pρ

(
|Rn(h)| ≤ x+ C1n

−1−ϵ
)

and

Pρ

(
|Rn(h)| ≤ x+∆n, |∆n| ≤ C1n

−1−ϵ
)
≥ Pρ

(
|Rn(h)| ≤ x− C1n

−1−ϵ
)
+O

(
n−1−ϵ

)
,

we conclude Pρ (|Rn(h)| ≤ x+∆n, |∆n| ≤ n−1−ϵ) = Pρ (|Rn(h)| ≤ x) + O (n−1−ϵ). Taking

x = cn(h, 1 − α) and using that Pρ (|Rn(h)| ≤ cn(h, 1− α)) = 1 − α (due to part 2 in

Assumption 5.1), we conclude Pρ (β(ρ, h) ∈ C∗
n(h, 1− α)) = 1− α +O (n−1−ϵ) .
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Part 2: Fix ϵ ∈ (0, 1/2). Define En,1 = {|ρ̂n| ≤ 1−a/2}, En,2 = {n−1
∑n

t=1 ũ
2
t ≥ C̃σ}, En,3 =

{n−1
∑n

t=1 ũ
4k
t ≤M}, and En,4 = {max1≤r≤12 |n−1

∑n
t=1 ũ

r
t −E[urt ]| ≤ n−ϵ}, where C̃σ andM

are as in Lemma B.5. Define En = En,1∩En,2∩En,3∩En,4. By Lemma B.5 and Assumption

5.1, it follows that P (Ec
n) ≤ C2n

−1−ϵ for some constant C2 = C2(a, h, k, Cσ, ϵ, cu). Note that

conditional on the event En, we can use Lemma B.4 for the distribution of the bootstrap

root R∗
n(h). That is

sup
x∈R

|Jn(x, h, P̂n, ρ̂n)− J̃n(x, h, P̂n, ρ̂n)| ≤ Dn + n−1−ϵC

(
n−1

n∑
t=1

|ũt|k + ũ2kt + ũ4kt

)
,

for some constant C, where

Dn = sup
x∈R

∣∣∣J̃n(x+ n−1−ϵ, h, P̂n, ρ̂n)− J̃n(x− n−1−ϵ, h, P̂n, ρ̂n)
∣∣∣ .

By Theorem B.3, there is an Edgeworth expansion for J̃n(x, h, P̂n, ρ̂n) conditional on En.

This implies Dn ≤ Cn−1−ϵ conditional on En, for some constant C. Similarly, conditional on

En, n
−1
∑n

t=1

(
|ũi|k + ũ2kt + ũ4kt

)
≤ C, for some constant C that depends onM . We conclude

that, conditional on En, Jn(x, h, P̂n, ρ̂n) has the following Edgeworth expansion,

sup
x∈R

∣∣∣∣∣Jn(x, h, P̂n, ρ̂n)−

(
Φ(x) +

2∑
j=1

n−j/2qj(x, h, P̂n, ρ̂n)ϕ(x)

)∣∣∣∣∣ ≤ Cn−1−ϵ .

The properties of qj(x, h, P̂n, ρ̂n) from Theorem B.3 and arguments from the proof of Theorem

5.1 imply

sup
x∈R

∣∣∣Pρ

(
|R∗

n(h)| ≤ x | Y (n)
)
−
(
2Φ(x)− 1 + 2n−1q2(x, h, P̂n, ρ̂n)ϕ(x)

)∣∣∣ ≤ Cn−1−ϵ .

Recall that the coefficients of q2(x, h, P̂n, ρ̂n) are polynomial of the moments of P̂n (up-to

order 12) and ρ̂n. Conditional on En, we know the moments of P̂n are close to the moments

of P : |n−1
∑n

t=1 ũ
r
t − E[urt ]| ≤ n−ϵ for r = 1, . . . , 12. Therefore, conditional on En, we have

sup
x∈R

∣∣Pρ

(
|R∗

n(h)| ≤ x | Y (n)
)
−
(
2Φ(x)− 1 + 2n−1q2(x, h, P, ρ)ϕ(x)

)∣∣ ≤ Cn−1−ϵ ,

for some constant C. By (A.5) in the proof of Theorem 5.1, the previous inequality, and the
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definition of c∗n(h, 1− α) and cn(h, 1− α) as quantiles, we conclude that

|c∗n(h, 1− α)− cn(h, 1− α)| ≤ C1n
−1−ϵ

for some constant C1. This completes the proof of our assumption in part 1.

B Auxiliary Results

B.1 Lemmas

Lemma B.1. Suppose Assumptions 4.1 and 4.2 hold. Then, for any fixed η > 0, there exist

constants M > 0, K̃4 > 0, and N0 = N0(η) such that

1. Pρ

(
g(ρ, n) n1/2 |ρ̂n − ρ| > M

)
< η ,

2. Pρ (|n−1
∑n

t=1 ũ
2
t − σ2| > σ2/2) < η ,

3. Pρ

(
n−1

∑n
t=1 ũ

4
t > K̃4

)
< η ,

for n ≥ N0 and ρ ∈ [−1, 1], where g(ρ, k) =
(∑k−1

ℓ=0 ρ
2ℓ
)1/2

, ρ̂n is as in (12), and {ũt : 1 ≤
t ≤ n} are centered residuals as in (13).

Proof. See Section C.1 in Online Supplemental Appendix C.

Lemma B.2. For any fixed M > 0. Suppose that for any ρ ∈ [−1, 1] we have

|ρ̂n − ρ| ≤ M

n1/2g(ρ, n)
,

where g(ρ, k) =
(∑k−1

ℓ=0 ρ2ℓ
)1/2

. Then, there exist constants M̃ = M̃(M) > 0 and N0 =

N0(M) > 0 such that |ρ̂n| ≤ 1 + M̃/n for all n ≥ N0.

Proof. See Section C.2 in Online Supplemental Appendix C.

Lemma B.3. Suppose Assumptions 4.1 and 4.2 hold. Fix ϵ > 0. Then, for any α ∈ (0, 1)

and for any sequence hn ≤ n such that hn = o (n), we have
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1. limn→∞ suph≤hn
supρ∈[−1,1] Pρ

(
z1−α/2−3ϵ/2 ≤ c∗n(h, 1− α) ≤ z1−α/2+3ϵ/2

)
= 1 ,

2. limn→∞ suph≤hn
supρ∈[−1,1] Pρ

(
zα0−ϵ/2 ≤ q∗n(h, α0) ≤ zα0+ϵ/2

)
= 1 ,

where zα0 is the α0-quantiles of the standard normal distribution, c∗n(h, 1− α) is as in (15),

and q∗n(h, α0) is the α0-quantile of R∗
b,n(h) defined in (14).

Proof. See Section C.3 in Online Supplemental Appendix C.

Lemma B.4. Suppose Assumption 5.1 holds. For any fixed h ∈ N and a ∈ (0, 1). Then,

for any ρ ∈ [−1 + a, 1− a] and ϵ ∈ (0, 1/2), there exist constant C = C(a, h, k, Cσ) > 0 and

a real-valued function

T (·;σ2, ψ4
4, ρ) : R

8 → R ,

such that

1. T (0;σ2, ψ4
4, ρ) = 0,

2. T (x;σ2, ψ4
4, ρ) is a polynomial of degree 3 in x ∈ R8 with coefficients that are continu-

ously differentiable functions of σ2, ψ4
4, and ρ,

3. supx∈R |JT (x, h, P, ρ)− J̃n(x, h, P, ρ)| ≤ Dn + n−1−ϵC
(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
,

where σ2 = EP [u
2
1], ψ

4
4 = EP [u

4
1], k ≥ 8(1 + ϵ)/(1− 2ϵ),

J̃n(x, h, P, ρ) ≡ Pρ

(
(n− h)1/2T

(
1

n− h

n−h∑
t=1

Xt;σ
2, ψ4

4, ρ

)
≤ x

)
,

and

Dn = sup
x∈R

∣∣∣J̃n(x+ n−1−ϵ, h, P, ρ)− J̃n(x− n−1−ϵ, h, P, ρ)
∣∣∣ .

The sequence {Xt : 1 ≤ t ≤ n−h} is defined in (B.4). Furthermore, the asymptotic variance

of (n− h)1/2T ((n− h)−1
∑n−h

t=1 Xt;σ
2, ψ4

4, ρ) is equal to one.

Proof. See Section D.1 in Online Supplemental Appendix D.

Lemma B.5. Suppose Assumption 5.1 holds. For any fixed h ∈ N and a ∈ (0, 1). Then, for

any |ρ| ≤ 1− a and ϵ ∈ (0, 1/2), there exist C = C(a, k, h, Cσ, ϵ, cu), C̃σ, and M such that

1. P (|ρ̂n| > 1− a/2) ≤ Cn−1−ϵ
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2. P (|n−1
∑n

t=1 ũ
r
t − E[urt ]| > n−ϵ) ≤ Cn−1−ϵ

3. P
(
n−1

∑n
t=1 ũ

2
t < C̃σ

)
≤ Cn−1−ϵ

4. P
(
n−1

∑n
t=1 ũ

4k
t > M

)
≤ Cn−1−ϵ

for fixed r ≥ 1, k ≥ 8(1 + ϵ)/(1− 2ϵ), where ρ̂n and the centered residuals {ũt : 1 ≤ t ≤ n}
are defined in (12) and (13), respectively.

Proof. See Section D.2 in Online Supplemental Appendix D.

B.2 Uniform Consistency

For any fixed M > 0, consider the sequence of models:

yn,t = ρnyn,t−1 + un,t , yn,0 = 0 , and ρn ∈ [−1−M/n, 1 +M/n] ,

where {un,t : 1 ≤ t ≤ n} is a sequence of shocks with probability distribution denoted by Pn.

We use Pn and En to compute respectively probabilities and expected values of the sequence

{(yn,t, un,t) : 1 ≤ t ≤ n}. This appendix presents results for a sequence of AR(1) models.

We extend the notation introduced in Section 2 for the sequence of models. For fixed

any h < n, the coefficients in the linear regression of yn,t+h on (yn,t, yn,t−1) are defined by

(
β̂n(h)

γ̂n(h)

)
=

(
n−h∑
t=1

xn,tx
′
n,t

)−1(n−h∑
t=1

xn,tyn,t+h

)
, (B.1)

where xn,t ≡ (yn,t, yn,t−1)
′. And the HC standard error ŝn(h) is defined by

ŝn(h) ≡

(
n−h∑
t=1

ûn,t(h)
2

)−1/2(n−h∑
t=1

ξ̂n,t(h)
2ûn,t(h)

2

)1/2(n−h∑
t=1

ûn,t(h)
2

)−1/2

,

where ξ̂n,t(h) = yn,t+h − β̂n(h)yn,t − γ̂n(h)yn,t−1, ûn,t(h) = yn,t − ρ̂n(h)yn,t−1, and ρ̂n(h) is

defined as

ρ̂n(h) ≡

(
n−h∑
t=1

y2n,t−1

)−1(n−h∑
t=1

yn,tyn,t−1

)
. (B.2)
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For any fixed positive constants K4 > 0 and σ ≥ σ > 0, we consider the next assumption

that imposes restrictions on the distribution of the shocks Pn.

Assumption B.1.

i) {un,t : 1 ≤ t ≤ n} are i.i.d. random variables with mean zero and variance σ2
n.

ii) En[u
4
n,t] < K4 and σ2

n ∈ [σ, σ].

We denote by Pn,0 the set of all distributions Pn that verify Assumption B.1. Theorem

B.1 below shows that the results presented in Xu (2023) and Montiel Olea and Plagborg-

Møller (2021) also hold for sequences of AR(1) models with i.i.d. shocks. We adapt their

proof and simplify some steps based on our stronger assumptions over the serial dependence

of the shocks. For instance, we assume only bounded 4th moments, while they assume

bounded at least 8th bounded moments. One remarkable difference is that we do not need

to assume a high-level assumption such as Assumption 4.2 since this can be verified using

Assumption B.1; we present the claim of this result in the next proposition.

Proposition B.1. Suppose Assumption B.1 holds. Then, we have

lim
K→∞

lim
n→∞

inf
Pn∈Pn,0

inf
|ρn|≤1+M/n

Pn

(
g(ρ, n)−2 n−1

n∑
t=1

y2n,t−1 ≥ 1/K

)
= 1 ,

where g(ρ, k) =
(∑k−1

ℓ=0 ρ2ℓ
)1/2

.

Proof. See Section C.4 in Online Supplemental Appendix C.

Theorem B.1. Suppose Assumption B.1 holds. Then, for any sequence hn ≤ n such that

hn = o (n), we have

sup
h≤hn

sup
Pn∈Pn,0

sup
|ρ|≤1+M/n

sup
x∈R

|Jn(x, h, Pn, ρ)− Φ(x)| → 0 , as n→ ∞,

where Jn(·, h, Pn, ρ) is as in (7) and Φ(x) is the cdf of the standard normal distribution.

Proof. See Section C.5 in Online Supplemental Appendix C.

Proposition B.2. Suppose Assumption B.1 holds. In addition, assume ρn = 1− c1/n and

hn is such that hn ≤ n and hn/
√
n→ c2 as n→ ∞ where c1, c2 > 0. Then,

lim inf
n→∞

Pn

(
[1/L, L] ⊆ C∗

la−ar(hn, 1− α)
)
≥ 1− α
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for any L > 1, where C∗
la−ar(h, 1− α) is defined in Remark 4.5, and presented below

C∗
la−ar(h, 1− α) =

[
(β̂n(1)− ŝn(1)c

∗
n(1, 1− α))h, (β̂n(1) + ŝn(1)c

∗
n(1, 1− α))h

]
.

Proof. See Section C.6 in Online Supplemental Appendix C.

B.3 Asymptotic Refinements

Consider the sequence {zt : 1 ≤ t ≤ n} defined as

zt = ρzt−1 + ut , and z0 =
∞∑
ℓ=0

ρℓu−ℓ ,

where {u−ℓ : ℓ ≥ 0} is an i.i.d. sequence with the same distribution as u1. This appendix

presents asymptotic expansion results for distributions of real value functions based on sam-

ple averages of the sequence {Xt = F (zt−1, zt, zt+h) : 1 ≤ t ≤ n− h}, where F is a function

that we define below. Our approach in this section relies on the framework and results

presented in Götze and Hipp (1994) and Bhattacharya and Ghosh (1978).

Let F (· ;σ2, V, ρ) : R3 → R8 be a function defined at (x, y, z) equal to(
(z − ρhy)(y − ρx), (y − ρx)2 − σ2, ((z − ρhy)(y − ρx))2 − V, (z − ρhy)(y − ρx)3,

(y − ρx)x, (z − ρhy)x, (z − ρhy)2(y − ρx)x, (z − ρhy)(y − ρx)2x
)
, (B.3)

where σ2 = σ2(P ) = EP [u
2
1], V = V (ρ, h, P ) = EP [ξ

2
1u

2
1], ξ1 = ξ1(ρ, h) ≡

∑h
ℓ=1 ρ

h−ℓu1+ℓ, and

P is the distribution of the shocks that verified Assumption B.2 that we define below. Using

that ut = zt − ρzt−1, ξt = zt+h − ρhzt, and the definition of F in (B.3), we can write the

sequence of random vectors {Xt = F (zt−1, zt, zt+h;σ
2, V, ρ)) : 1 ≤ t ≤ n− h} as follows

Xt = (ξtut, u
2
t − σ2, (ξtut)

2 − V, ξtu
3
t , utzt−1, ξtzt−1, ξ

2
t utzt−1, ξtu

2
t zt−1) . (B.4)

We assume in this section that h ∈ N is fixed and |ρ| < 1. Moreover, for any fixed positive

constants C18 > 0 and Cσ > 0, we consider the next assumption that imposes restrictions

on the distribution of the shocks P .

Assumption B.2.
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i) {ut : 1 ≤ t ≤ n} is independent and identically distributed with E[ut] = 0.

ii) ut has a positive continuous density.

iii) E[u18t ] ≤ C18 <∞ and E[u2t ] ≥ Cσ.

Assumption B.2 implies that the sequence {zt : 1 ≤ t ≤ n} is strictly stationary. By

construction, E[Xt] = 0 ∈ R8. Define

Σ = lim
n→∞

Cov

(
(n− h)−1/2

n−h∑
t=1

Xt

)
. (B.5)

The asymptotic covariate matrix Σ is non-singular due to Lemma 2.1 in Götze and Hipp

(1994), Assumption B.2, and how we defined the sequence {Xt : 1 ≤ t ≤ n − h}. Let

T : R8 → R be a polynomial with coefficients depending on ρ, EP [u
2
1], and EP [u

4
1] such that

T (0) = 0. Define

J̃n(x, h, P, ρ) ≡ Pρ

(
(n− h)1/2

σ̃
T

(
1

n− h

n−h∑
t=1

Xt

)
≤ x

)
, (B.6)

where σ̃2 is the asymptotic variance of (n− h)1/2T ((n− h)−1
∑n−h

t=1 Xt). The next theorem

shows that the distribution J̃n(·, h, P, ρ) admits a valid Edgeworth expansion.

Theorem B.2. Suppose Assumption B.2 holds. Fix a given h ∈ N and a ∈ (0, 1). Then,

for any ρ ∈ [−1 + a, 1− a], we have

sup
x∈R

∣∣∣∣∣J̃n(x, h, P, ρ)−
(
Φ(x) +

2∑
j=1

n−j/2qj(x, h, P, ρ)ϕ(x)

)∣∣∣∣∣ = O
(
n−3/2

)
,

where J̃n(x, h, P, ρ) is as in (B.6), Φ(x) and ϕ(x) are the cdf and pdf of the standard normal

distribution, and q1(x, h, P, ρ) and q2(x, h, P, ρ) are polynomials on x with coefficients that

are continuous function of moments of P (up to order 12) and ρ. Furthermore, we have

q1(x, h, P, ρ) = q1(−x, h, P, ρ) and q2(x, h, P, ρ) = −q2(−x, h, P, ρ).

The proof of Theorem B.2 is presented in Section D.3 in Online Supplemental Appendix

D. It relies on Götze and Hipp (1983, 1994) to guarantee the existence of Edgeworth expan-

sion for sample averages and in the results of Bhattacharya and Ghosh (1978) to complete

the proof.
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For the empirical distribution P̂n defined in (13) and the estimator ρ̂n defined in (12), we

consider the bootstrap sequence {z∗b,t : 1 ≤ t ≤ n} defined as

z∗b,t = ρ̂nz
∗
b,t−1 + u∗b,t , and z∗b,0 =

∞∑
ℓ=0

ρ̂ℓnu
∗
b,−ℓ ,

where {u∗b,j : j ≤ n} is an i.i.d. sequence draw from the distribution P̂n. Define the sequence

of random vectors {X∗
b,t = F (z∗b,t−1, z

∗
b,t, z

∗
b,t+h; σ̂

2
n, V̂n, ρ̂n) : 1 ≤ t ≤ n − h}, where F (·) is as

in (B.3) and σ̂2
n, V̂n, ρ̂n are the defined using P̂n and ρ̂n.

Theorem B.3. Suppose Assumption 5.1 holds. Fix a given h ∈ N and a ∈ (0, 1). Then,

for any ρ ∈ [−1 + a, 1− a] and ϵ ∈ (0, 1/2), there exist constants C1 and C2 such that

P

(
sup
x∈R

∣∣∣∣∣J̃n(x, h, P̂n, ρ̂n)−

(
Φ(x) +

2∑
j=1

n−j/2qj(x, h, P̂n, ρ̂n)ϕ(x)

)∣∣∣∣∣ > C1n
−3/2

)
,

is lower than C2n
−1−ϵ, where J̃n(x, h, ·, ·) is as in (B.6) and X∗

b,t is replacing Xi, Φ(x)

and ϕ(x) are the cdf and pdf of the standard normal distribution, and q1(x, h, P̂n, ρ̂n) and

q2(x, h, P̂n, ρ̂n) are polynomials on x with coefficients that are continuous function of moments

of P̂n (up to order 12) and ρ̂n. Furthermore, we have q1(x, h, P̂n, ρ̂n) = q1(−x, h, P̂n, ρ̂n) and

q2(x, h, P̂n, ρ̂n) = −q2(−x, h, P̂n, ρ̂n).

The proof of Theorem B.3 is presented in Section D.4 in Online Supplemental Appendix

D. It relies on Götze and Hipp (1983, 1994), Bhattacharya and Ghosh (1978), and Lemma

B.5.
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