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C Proof of Auxiliary Results: Uniform Inference

C.1 Proof of the Lemma B.1

Proof. Notation: We say a sequence of random variables Z,, is uniformly O, (1) if Ve > 0
there exists M > 0 and ny € N such that P,(|Z,| > M) < € for any p € [—1,1] and n > n,.
Similarly, Z, is uniformly o, (1) if Ve, d > 0 there exists ny € N such that P,(|Z,| > §) < €
for any p € [-1,1] and n > ny.

Item 1: Consider the following derivation:

i — p) = (g(fw)‘2 Z?zly?_1>1 (M) |

1/2
g(p,n) = (pn 0 g(p,n)n'’?

where the first term is uniformly O, (1) due to Assumption 4.2. The second term is also

uniformly O, (1) due to the following derivation:
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where the first inequality follows by Cauchy’s and algebra manipulation and the second
inequality follows by Assumption 4.1 and part(i) of Lemma MOMT-Y in Xu (2023). The
constant Cyy depends on the distribution of the sequence {u; : ¢ > 1} but does not depend

1/2

on p. Therefore, we conclude g(p,n) n'/? (p, — p) is uniformly O, (1) for any p € [—1,1],

which conclude the proof of the lemma.

Item 2: Recall that @, = 4, — n~! Z?Zl Uy, where Uy = 1y — ppyi—1 and p, is defined in

(12). By Bonferroni’s inequality, it is sufficient to prove that there exists Ny = Ny(n) such

that
n
P, ( n_lzﬁf — 02
t=1

> 02/4) <n/2 (C.1)
and

(n_lzn:ﬂt> >o?/4 ] <n/2 (C.2)

for any n > Ny and any p € [—1,1]. Lemma SIG in Xu (2023) adapted for the case of the
AR(1) model implies (C.1). To prove (C.2), we derive the following inequality

(Z)=( 'St g zyu>
S )

where we used Loeve’s inequality (see Theorem 9.28 in Davidson (1994)) in the inequal-

ity above. Note that the first term is uniformly o, (1) due to the law of large numbers

for a-mixing sequences (see Corollary 3.48 in White (2000)) and Assumption 4.1. Since
y271
g(;m)2

g(p,n)*(pn—p)? is uniformly o, (1) due to Part 1, it is sufficient to prove that n=' 3" |
is uniformly O, (1). The last claim follows by the next inequality

1 - th 1 1 - y?l 12 1/2
N )

E
“—~ g(p,n) —

where the last inequality follows by part(i) of Lemma MOMT-Y in Xu (2023). The constant
Cy4 depends on the distribution of the sequence {u; : ¢ > 1} but does not depend on p.

Therefore, n=* > 7" | gyt oy is uniformly O, (1), which concludes the proof of the lemma.

Item 3: Recall that @, = 4 — n ™" 2?21 Uy, where Uy = vy, — ppyi—1 and p, is defined in



(12). By Loeve’s inequality (see Theorem 9.28 in Davidson (1994)), we obtain

n 4
(Ghy —mn~ Zut ((ty —ug) +n~ Zut—l—ut )< 3 ({Lt—ut)4+<nlzat) + uy
t=1

t=1

Therefore, it is sufficient to prove that there exists Ny = Ny(n) and f(4 such that

P <n—1 zn:(at —u)t > K, /81| <n/3, (C.3)

t=1

(mliat) > K, /81| <n/3, (C.4)

P (n_l Zuf > K4/81 | <n/3. (C.5)
=1

To prove (C.3), we use Uy — uy = (p — pn)ys—1, the following equality

n 4
_ “ R _ Y
n Y (i =) = (b — )t glpn)t 0y
t=1

“— g(p,n)

Markov inequality, and part (i) of Lemma MOMT-Y in Xu (2023). To verify (C.4), we use

(C.2) from the proof of Part 2. Finally, Markov’s inequality and Assumption 4.1 implies
(CH). m

C.2 Proof of the Lemma B.2

Proof. We first prove that there exists M = M(M) > 0 and Ny = No(M) > 0 such that

M M
<14 —, (C.6)

Pt —m T <
n12g(p, ) n

for all n > Ny. Note that (C.6) is sufficient to conclude that p, < 1+ M/n since p, <
p+Mn='2/g(p,m).

Let us prove (C.6) by contradiction. That is: suppose that there exist sequences py,
M, — oo, and nj, — oo such that py + M/(n,lc/Qg(pk,nk)) > 14+ Mk/nk, for all k. The



previous expression is equivalent to

~ ,n
M > i 2o (1= )+ 3, X2 (©7)
T,

Define ay = ng(1 — |pn,|). Consider the derivation to get a lower bound for g(pg, ng):

g(pkvnk)2 =1+ (1 — ak/nk)z + ...+ (1 - ak/nk)Q("k_l)
_ {1 —(1—=ag/ng)™ H1+ (1 —ag/ng)"}
ar/np{2 — ag/np}
n, 1—e %

> — X
Qe 2

?

where the last inequality use that (1 —ay/ng)™ = exp(nglog(l —ag/nk)) < exp(—ag). With-
out loss of generality, suppose that ay — a € [0, +00]; otherwise, we can use a subsequence.

We now consider two cases. For the first case, suppose a, — +00. This implies that

1/2 1— e\ 1/2
g (P ) (1 — pi) = (T) " — o0,

which contradicts (C.7). For the second case, suppose ay — a. This implies that

Mk 1—e % vz
2k >(—“ ) o
\/n—kg<,0k7nk) = ( 2(1% ) k o,

which contradicts (C.7). Therefore, there exists No = No(M) and M = M (M) such that
(C.6) holds for n > Ny. We can adapt the proof to conclude that p, > —1 — M /n for all
n > No. |

C.3 Proof of the Lemma B.3

Proof. We prove only item 1 since the proof of item 2 is analogous. The proof of item 1 has
three steps. First, we can write B, (|R;; ,(h)] < 2 | Y™) — (2®(2) — 1) = I 4 I, + I3, where
I = Ju(z,h, Py, pp) — (), I = ®(—z) — Jo(—x, b, Py, pp), and

Iy = Py(R;,,(h) = =2 | Y) < By(R; y(h) € (—x —¢/2, —x +¢/2] [ Y™) .

n,b



Second, conditional on the event E,, defined in the proof of Theorem 4.1, the inequality (A.1)
in the proof of Theorem 4.1 implies that |I;| < €/2 and |I5| < €/2 for any n > Ny = Na(e,n)
and any h < h,, such that h, < n and h, = o(n). Also, the inequality (A.1) and algebra

manipulation implies |I3] < 2e. Therefore, we conclude

sup sup |P, (|R;,(h)| < x| Y(”)) — (2®@(z) — 1)| < 3e, (C.8)
h<h, z€R

for any n > N, and any h,, < n such that h, = o(n). Third, taking = 21_q/2_3¢/2 in (C.8),
it follows that |P, (IR: ,(h)| < z1—a/2—3¢/2 | Y™) — (1 - a —3€)| < 3¢, which implies

b, (’R:L,b<h)| < Zi—a/2-3¢/2 | Y(n)) <l-a.

By definition of ¢f(h,1 — «) as in (15), it follows that ¢ (h,1 — «)

conditional on the event E,. We similarly obtain that ¢ (h,1 — «)

Zl1—a/2—3¢/2 holds

IN IV

Z1—a/2+3¢/2 holds

conditional on F,,. m

C.4 Proof of Proposition B.1

Proof of Proposition B.1. We use the general subsequence approach of Andrews et al. (2020)
to show that the uniform result in the proposition holds. We prove that for any sequence
{pn : n > 1} such that |p,| <1+ M/n and any sequence {02 : n > 1} C [o, 7], there exists
subsequences {pn, : k > 1} and {0, :k > 1} such that

Nk
lim lim P ( 9(Pne ) Pt Y Y 1/K> =1. (C.9)
i=1

K—oo k—oo

We consider two cases to prove (C.9). The first case is ng(1 — |pn,|) — oo for some
subsequence {ny : k > 1}, which considers the subsequence of p,, that stay on the stationary
region or go to the boundary at slower rates. The second case is ng(l — |pn,|) = ¢ €
[—M, +00) for some subsequence {ny : k > 1}, which considers the subsequence of p, that
goes to the boundary (local-unit-model) or are on it (unit-root model). For both cases,

we assume o, — 0

since any sequence {02 : n > 1} C [g, 7] has always a convergent
subsequence. To avoid complicated sub-index notation, we present the algebra derivation

using the original sequence.

Case 1: Suppose n(1 — |p,|) — oo and 02 — 02 as n — oo. This condition implies that



there exists Ny such that |p,| < 1 for all n > Ny, otherwise there is a subsequence |p,, |

in (1,1 + M/nk] but this cannot occur since ng(1l — |pn,|) € [-M,0]. As a result, we have
9(Pn; ) Zg 0 p% <(1- p2)_1 that implies

P(g(pn, Zynt 12 1/K> (ﬂ;—pg‘)iyi,t_l > 1/K> :

Therefore, to verify (C.9) is sufficient to prove that

lim lim P Mzﬂ:yz >1/K | =
K—o00 n—o0 n — nit—1 =

which follows if we prove

n

1—p?) o
d=r) Sk Bod (C.10)
t=1

We prove (C.10) in two steps.

Step 1: Using Assumption B.1 and vy, ;-1 = 2 i pimt= eumg, we derive the following:

n n n—1
p|d=r) Souze | = Lo a Y EBlup T H{i<0<i—1)
n n,t—1 n n,¢ n B o
pry =1 (=1
oAn—=1) o2 sy
= ;ZP "
=1

We conclude the right-hand side of the previous display converges to o7 since 02 — o2,

S o < (1 = |pal) (1 |pal)} Y and n(1 — |pal) — oo

Step 2: We use E[y?, 1] = g(pn,t — 1)%0 to derive the following decomposition

n n—1 n—1

2 2 2 2
E :yn,t—l - E[yn,t—l] = (un,f - Un) bn,f +2 § Un, ¢ dn,ﬁ )
=1 /=1 /=1

o 2(i—1—1) - -1 0—¢
where bnyg = Zi:l—i—é Pn and dn,K = bn,é 242 1 Un 5P, 2

respect to the o-algebra defined by {u,x:1 <k <{¢—1}.

. Note d, is measurable with

The decomposition above, Loeve’s inequality (see Theorem 9.28 in Davidson (1994)), and



Assumption B.1 imply that the variance of (1 — p2)n~' > | 42, is lower than

2(1 —p3)? — 2 22| ;2 — 2 2
— (Y (2= |2+ 2> BL2 B, ) .
/=1
Since b2, < (1—p2) 2 and E[d2 ] = 12,02 S0 2 pnl ™™ < 02(1—p2) B for =1,...,n—1,

and F [( uz , —0r)? < Eluy, | < Ky by Assumption B.1, the previous display is lower than

2(n— 1)Ky  8(n—1)o
R

Y

)

which goes to 0 since o, = Efu? > < Eluy ] < Ky and n(1—p2) = n(1—|pn])(1+]pn]) = o0
as n — oo. This proves that the variance of the left-hand side on (C.10) goes to zero, which

proves (C.10) due to step 1.

Case 2: Suppose n(1 — |p,|) = ¢ € [-M,+00) and 02 — 0f as n — oo. We first observe
that g(pn,n)?* < nexp(2M) due to |p,| <14 M/n and the following derivation:

9(pnsn Zp% <n(l+ M/n)> =nexp (2nlog (1 + M/n)) < nexp (2M) ,

where we used that log(1 4+ z) < z for all x > —1. By the previous observation

P(Q(Pm Zy - 121/K> (eXp Zynt 1 21/K> )

where exp(—2M) is a constant that does not change as n — oo and K — oo. Therefore, it
is sufficient to prove that limg e limy 0o P ( 5> 7 y2, 1 > 1/K ) =1 to verify (C.9),

which follows if we prove

1 « !
T /0 J(r)dr | (C.11)
t=1

where J_(r) = [ e”""9°dW (s) and W(s) is a standard Brownian motion.

To prove (C.11), we rely on the results and techniques presented in Phillips (1987).
Specifically, we adapt his Lemma 1 part (c) for the sequence of models and the drifting
parameter that we consider in this paper. We proceed in two steps. First, we construct

a triangular array {g,: : 1 <t < n,n > 1} that verify (C.11). Then, we prove that the



constructed sequence verifies that n™2y )" g2, | —n"2Y " G2, = 0p(1).

Step 1: Define @,y = unI{pn > 0} + (=1)'un I{p, < 0} for all ¢ = 1,...,n. Note that
the sequence {7, : 1 <t < n} defines a martingale difference array with the same variance
Ela?,] = of and satisfies that Ela;, ] € [¢,5], and El[t, ] < K,. Using this notation, we

construct the following triangular array:

—c/n

Ynt = € Yn,t—1 + Unt y»  Yno = 0 )

where ¢ = lim,,_,o, (1 — |p,|). Denote the sequence of partial sums by S, ; = Zizl Up for

any j =1,...,n and S, o = 0. Let us define the following random process
11 11
X, (r) = %U—SH’[M = \/ﬁUoS g1 f(G—-1)/n<r<j/n,

and X, (1) = \%%Snn By a functional central limit theorem for martingale difference
arrays (see Theorem 27.14 in Davidson (1994)), we claim that {X,,(r) : r € [0, 1]} converges

to the standard Brownian motion process {W(r) : r € [0,1]}. To use this result, we prove

n  ~9 - [nr]
Unt p Unt | Elu
(a) E . T 1, (b) max \/_0 (c) lim E na2 =
t=1 n "

We can verify condition (a) using u , = Chebyshev’s inequality and Assumption B.1:

‘

for any € > 0. To verify condition (b) holds is sufficient to show that
un ,t

~2
n,t
] ) 2] o

for any ¢ > 0, where I{-} is the indicator function. If the previous display holds, then

nt’

no ~2

un,t
Z 2 1
noz

t=1

€Zn

_g n K,
>e><n—ZE[uit]§——>0 as n — oo ,

condition (b) follows by theorem 23.16 in Davidson (1994). To verify the previous condition,

note that
ﬁn t a?z t un t
| >cp| <nk oy} 2]
n2ohc

~2
E|-tr
! {ncr? { Vno, Vnoy,

where the last inequality uses ﬂit = ufm and Assumption B.1. Finally, condition (c¢) holds

CH CElind o Ka

notc? T ng?c?’




since B[’ | = 0.

Using the functional central limit theorem, the continuous mapping theorem, and o,, —
09, we can repeat the arguments presented in the proof of Lemma 1 in Phillips (1987) to
conclude that n™23 71" 72, 2 o2 fo J_o(r)?dr .

N e i—C ~ NV —c(i—0)/ny .
¢/n . We know Ynt = D gy P Upy and Gy = >, € (s )/"Un,u

therefore, J1 = Ynt — Ry if pn >0, and §py = (—1)'yns — Ruy if pn < 0, where

Step 2: Define a,, = |pyle

o~

=1

Therefore, we conclude that 7 , = 72, + 20 Rys + R2. ;. This implies that

%Zyz,tl Zynt 1 Zynt 1Rn| + 12 ZRi,t
t=1 =1

By Cauchy—Schwartz’s inequality, the right-hand side of the previous expression is lower

1/2 _ 1/2 Lo
( Zynt 1> (ﬁZRit) + EZR?W‘/
i=1 i=1

By the result at the end of Step 1, we have n™> 3" | 72, is Oy (1). Therefore, it is sufficient
to show n ™23 " | R, % 0 to conclude that (C.12) converges to zero in probability.

than or equal to

. (C.12)

To verify the claim, we first observe that ale~(=0¢/" = |p, |[Je=(—t=0)e/m < |p,|7 for all

7=0,...,1—¢—1, which implies that

|Rn,t| =

t
D (n =11 +an+ ..+ a;—ﬁ—l)e-@-@c/nan,ﬁ‘
/=1

t
< Jan = 113200+ Joal + oo loal ™ it -
/=1

Using the previous inequality and |p,|? < (1+ M/n)? < (1 + M/n)" < eM, we obtain

)

|Rnt|<eM|an—1|Z t — 0)| Uy <M
=1




for all t =1,...,n, where we used that |t,¢| = |u,,| in the last inequality. Then, we derive

" 2
223 < e®|n(a, — 1) (n_lz |un,gy> .

=1
By Markovs’s inequality and Assumption B.1, we obtain that n='>") | |u,.| is O, (1).
Analyzing a, — 1 = e (|p,| — e /"), we can conclude that n(a, — 1) = o(1), which
implies that the right-hand side of the previous display converges to zero in probability.
As a result, we conclude that (C.12) converges to zero in probability, which implies that
nEy Y =2y Uay 1 = 0p (1), and by the result at the end of Step 1, we con-
clude (C.11). m

C.5 Proof of Theorem B.1

Additional Notation: Define &, (pn, i) = Ynisn, — B(Pns hn)yns and recall B(p, h) = ph.
Algebra shows

gnt pnv n an unt+€ . (013)

Proof. The derivations presented on pages 1811 and 1812 in Montiel Olea and Plagborg-
Mgller (2021a) imply

?:_1hn fn,t (pn; hn)an,t(hn)

Rn<hn) - ’
<Z?:_1hn én,t(hn)2an,t(hn)2) 1/2

which is equal to

S el ot S0 Gl ) nall) = n) (0= BV ) )
(= b P2V (s ) 2 (= ) T2V (s ) S el Pine(ha)?)

where V(p,h) = E[&,+(h)?u?,]. We then follow their approach and prove that under As-

n,t

sumption B.1: for any sequences {p, : n > 1} C [-1—M/n,1+M/n], {02 :n > 1} C [, 7],

10



and {h,, : n > 1} satisfying h,, = o(n) and h,, < n, we have

(’l) Z?:}hn £n,t (pm hn>un,t
(n = ha)V2V (ppy b )12

e (s ) (g () = tng)
N P LIPS R
Z? 1hn gnt( ) unt(h )2 D,

(7i1) (= Vo o) —1.

4 N(0,1) ,

Finally, Lemmas C.4, C.5, and C.7 imply (i), (ii), and (iii), respectively. m

Lemma C.1. Suppose Assumption B.1 holds. Then, for any (pn,on, hs) such that |p,| <
1+ M/n, o2 € [o, 7], and h, < n, we have

E [Sn,t(pny hn)ﬂ < 4g(pn7 hn)4K4 )

1/2
where g(p, k) = (Zz 0 P > and &, +(pn, hn) is in (C.13).

Proof. 1t follows from the proof of Lemma A.7 in Montiel Olea and Plagborg-Mgller (2021a).

Lemma C.2. Suppose Assumption B.1 holds. Then, for any (pn,on, hyn) such that |p,| <
1+ M/n, o2 € [o, 7], and h, < n, we have

_ 2
E Z?:lhn gn,t(pna hn)?/n,t—l < n h, y 4K,
(n - hn)g<pn> n— hn)g(pm hn)a n

1/2
where g(p, k) = (Ze o P ) and &, ¢(pn, hn) is in (C.13).

Proof. The definition of &, +(pn, hy) in (C.13) implies ;) i Ent(Prs P )Ynt—1 = Z?zl U, jbn i,
where b, ; = Zt —ih, pithn=i g, 1{1 <t < n — h}. Note that b, ; is measurable with re-
spect to the o-algebra defined by {u,; : 1 < k < j —2}. Using Assumption B.1, we

obtain
(Z Uanan‘) ZEumbi] = O'ELZE[Z)EM] .
j=1 Jj=1
2
Therefore, the derivation above implies F [(Z?Zlh" Ent(Pns hn)yn,t_1> } =02 2?21 E [bfu]

11



We claim that

E[bi,j] S hng(pn; hn>29(pn7 n— hn)2 V 4I(4 ) (014)
for any j = 1,...,n. The previous claim and Assumption B.1 imply

n—hn

2
n n hn n,t— hn / hn /
E — =1 é- 7t(p )y 1 2 S % X 4K4 S n— X 4K4 .
(n h’ )Un (n h’ﬂ) Un

n)g(pm n— hn)g(pm hn (n — hn)Zg

To verify (C.14), we consider three cases. The first case is j < h,,, in which we derive

j—1 j—1

B2 = B[O 9" Igae)?] < (G — DED g2 y2 )

t=1 t=1

Jj—1

< hn (Z p2(t+h—j)) g(Pn7n . hn)2 4K,
t=1

S hng(pna hn)2g(pna n— hn)2 V 4K4 y

where we use Loeve’s inequality (see Theorem 9.28 in Davidson (1994)) in the first inequality

1/27 Ynt—1 = 5n,0(ﬂn7t - 1)7
Lemma C.1, and g(pn,t—1)* < g(pp,n—hy,)? forallt = 1,...,n—h,. Note that we also use

above. In the second inequality, we use Efy;, ] < Ely,, |]

j < h,,, which also implies the last inequality above. The second case is h,+1 < j < n—h,+1.
We follow the same approach as before and conclude E[b?] < hpng(pn, hn)?g(pn, n—hyn)*/4K,.
In the final case, we have j > n — h,, +2. Similarly, we obtain E[b3] < hng(pn, hn)?g(pn, n —

hn)Q\/4K4. |

Lemma C.3. Suppose Assumption B.1 holds. Then, for any (pn,on, hyn) such that |p,| <
1+ M/n, o2 € [o, 7], and h, < n, we have

n—hq, 2
B t=1 UntYnit—1 < 9K
((n — h)Y2g(pn,n — hyy) -
1/2
where g(p, k) = (Z?L& p”) -

Proof. 1t follows from the proof of Lemma E.8 in Montiel Olea and Plagborg-Mgller (2021a).
[

Lemma C.4. Suppose Assumptions B.1 hold. Then, for any sequences {p, : n > 1} such
that |p,| < 1+ M/n, {02 :n > 1} C [o, 7], and {h, : n > 1} satisfying h, = o(n) and

12



h, <n, we have

E:Z;fnéﬁi(pnahn)uni d
(n — h) 29 (pp, hn) 02 — N(0,1), (C.15)

where &1 (pn, hn) is in (C.13) and g(p, h)? = S, p*.

Proof. We adapt the proof of Lemma A1l in Montiel Olea and Plaghborg-Mgller (2021a). We
start by writing the left-hand side term in (C.15) as follows

n—hn

E Xn¢7
t=1

where
_ gn,n—hn-i-l—t(pn’ hn)unvn_hn‘i‘l_t

Ant = (n - hN)l/Zg(pm hn)o-r% 7

fort =1,...,n — h,. Define the o-algebra F,; = o (uy_p,+j—+: j > 1). Note that for any

t=1,...,n—hy, Xn. is measurable with respect to F,, ;. Therefore, the sequence {x,,:1 <
t <n—h,} is adapted to the filtration {F,; : 1 <t <n—h,}. Moreover, &, —n,+1-t(Pn, Fn)
is measurable with respect to JF, ;1 since it is a function of {w,n—p,+j-@-1): 1 < j < by}
This implies that E[xn.¢|Fn.—1] = 0 since

gmnfhW+L%(pnahn>

E\xnt|Fni-1] =
[Xn.t| Fnt—1] (n — h)2g(pn, hn )02

E[un,n—hn+1—t|fn,t—1]

and by Assumptions B.1 we conclude Eunn—p,+1-t|Fni-1] = E[tnn—n,+1-t] = 0.

The derivation presented above proves that the sequence {x,: : 1 <t <n—h,} is a
martingale difference array with respect to the filtration {F,;: 1 <t <n — h,}. The result
in (C.15) then follows by a martingale central limit theorem (Theorem 24.3 in Davidson
(1994)), which requires

n—hn n—hy
. 2 _ .. 2 P . P
(4) ; El.)=1, (i) ; Xpo — 1, (440) | Jmax Xl = 0.

The condition (i) follows by using that E[&,(pn, hn)?uZ,] = g(pn, hn)?ct. To prove the

n,t n

condition (i7) is sufficient to show
n—hn
Var (Z XL) —0. (C.16)
=1

13



To prove (C.16), we first recall that

n—hy 1 n—hn

ant Zgnt pn; 'rL nt?

where the second term of the right-hand side of the previous display can be decomposed into

B )g(Ons P

the sum of its expected value and another three zero mean terms:

(n—h)gpn, +Z ’I’L] Zun]dnj+z pmh)QZ?

where b,; = 32071, a2 I{1 <t <n—h,} and

j—1 j—t—1
Z Z Upy gy g, p2 I E29)2 acd{1<t<n—h,}.
t=j—hn fl2=1

Note that b, ; and d,, ; are measurable with respect to the c—algebra o (u,; : 1 < k < j—1}.
By Assumptions B.1 and Loeve’s inequality (Theorem 9.28 in Davidson (1994)), we conclude

7—1
EP2;]<hy Y Elpht Dyl ) < hog(pn, ha) ' Ki
t=j—hn
and
j—i—1 2
E[d2,] < hE (Z Uniye,pa 70 m) < hng(pns b)) o2 Ky
lo=1

forall j=1,....,n

We use the decomposition presented above, Assumptions B.1, and Loeve’s inequality (see
Theorem 9.28 in Davidson (1994)) imply that the left-hand side of (C.16) is lower than or

equal to

330 El(up; — o)y ;1 + 3370 Elug ;d2 514 39(pn, hn)on 320y El(ul ; — 02)?]
(n - hn) g(pna hn) o .

By Assumptions B.1 and the upper bounds that we found for E[b?, ;] and E[d, ], the previous
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expression is lower than or equal to

3nh, K32 3nh, K, 3nk,

(n—hp)?c* * (n—hy)?0® (0 —hy)?c®

The previous expression is o (1) since h,, = o (n) as n — oo. This implies that (C.16) holds.

Finally, to verify that condition (iii) holds is sufficient to show
(n—h,)E [X?Qz,tl{b(i,tl > C}} -0, (C.17)

for any ¢ > 0, where I{-} is the indicator function. If the condition in (C.20) holds, then
condition (iii) follows by Theorem 23.16 in Davidson (1994). To verify (C.17), note that

4
Xn,t

(n = ha) E DG I{x0al > ¢} < (0= ha)E { c?

E [Xi,t}
< (n—hy) 2
E [gn,n—hn—l—l—t(pn? hn)4] E [ui,n—hn—l-l—t]
(n— hn)agg(pna hy)tc?
AKAE [uy g 1]

(n — hy)odc?

H{xnal > c}

where the equality above uses Assumption B.1, and the last inequality follows by Lemma
C.1. By Assumption B.1 we obtain (n — h,)E [x2 I{|x2,] > c¢}] < 4K3}/((n — hy)a*c?),
which is sufficient to conclude (C.17). m

Lemma C.5. Suppose Assumption B.1 holds. Then, for any sequences {p, : n > 1} such
that |pn| < 14 M/n, {62 :n > 1} C |o, 7], and {h, : n > 1} satisfying h, = o(n) and

h, <n, we have

Z?:lh €n t(pm hn)@ln t(hn) — Un t) P
— ’ : 1
(n = ha)2g(pns )02 =0, (C.18)

where U (hy) = Ynt — Prn(hn)Yni—1, pn(hy) is defined in (B.2), and g(p, h)* = 2?21 2.

Proof. A proof can be adapted from the proof of Lemma A.4 and Lemma E.8 in Montiel Olea
and Plagborg-Moller (2021a). Importantly, their Assumption 3 (relevant for the proof) holds
due to Proposition B.1 in Appendix B. m

Lemma C.6. Suppose Assumption B.1 holds. Then, for any sequences {p, : n > 1} such
that |p,| < 1+ M/n, {02 :n > 1} C [o, 7], and {h, : n > 1} satisfying h, = o(n) and

15



h, <n, we have

(7)

g(pnv hn)
.. g(pm n— hn) (ﬁ(ﬂm hn) - n(ﬂm hn)) P
) o) =0,
(@di) (n— hn>1/2 X g(Pns1 = hn) X (Pn(hn) = pn) = Op(1) ,

where ﬁ(pna hn) = pnﬁn(hn) + 'A)/n(hn): n(Pn; hn) = pnﬁ(pm hn) = PZ”“; Bn(hn) and ﬁn(hn)
are defined in (B.1), pn(hy) is in (B.2), and g(p, h)?* = 22:1 p*h.

Proof. A proof can be adapted from the proof of Lemma A.3 in Montiel Olea and Plagborg-
Mpoller (2021a). Importantly, their Assumption 3 (relevant for the proof) holds due to Propo-
sition B.1 in Appendix B. m

Lemma C.7. Suppose Assumptions B.1 holds. Then, for any sequences {p, : n > 1} such
that |pn| < 1+ M/n, {62 :n > 1} C [o, 7, and {h, : n > 1} satisfying h, = o(n) and
h, <n, we have
?:_1% én,t(hn)zﬁn,t(hn)z £> 1
(1 — hn)g(pns hn )2y 7

where én,t(hn) = Ynt+h, — Bn(hn)yn,t - f?n(hn)yn,t—ly an,t<hn) = Unt — ﬁn(hn)yn,t—h Bn(hn)
and Ay, (hy) are defined in (B.1), pn(hy) is defined in (B.2), and g(p,h)? = 2?21 ph.

Proof. We adapt the proof of Lemma A.2 in Montiel Olea and Plagborg-Mgller (2021a)
presented in their Supplemental Appendix E.2. They claim that is sufficient to prove

o e () (h)* 0" o )0y
(n = hn)g(pn, hn)?oy, (n = hn)g(pn, hn)?oy, 7

(C.19)

since they then can conclude using their Lemma A6, which implies

—h
?:1 " gn,t(pm hn)Qui,t P

1.
(1 — h)g(pmi Bn)?0s

We avoid using their Lemma A6 since its proof requires that the shocks have a finite 8th
moment. Instead, we observe that (C.16) presented in the proof of Lemma C.4 implies the

previous claim.
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To verify (C.19), Montiel Olea and Plagborg-Mgller prove that is sufficient to show that

()i (ha)? = G 23|

(n — hy)g(pn, hn )20t (C.20)

converges in probability to zero. To prove that, they derive the following upper bound for
(C.20):
B[(£1)'/? x (Ro)"?] + 3[(R5)"/? x (Ra)"?] + 3[(F1)"/? x (Rs)"?]

where .
T Guton ) = () et
B e 7 S Y
RB _ :;hn [t i (hn) — un,t]4 7 R4 _ :;hn Enit(Pn, hn>4

n—hy (n = hy)g(pn, hn)tol .

In what follows, we use Assumptions B.1 to prove that (i) R; and Rs are o, (1) and
(ii) Ry and R, are O, (1), which are sufficient to conclude that (C.20) converges to zero in

probability.
To verify Ry is o, (1), let us first observe that

A~

fn,t(pn; hn) - gn,t(hn) - [ﬁn(hn) - B(,Onv hn)]un,t + [ﬁn(pn; hn) - W(Pn; hn)]yn,t—l 9

where 7(pn, hyn) = pnﬁn(hn) + Yn(hyn) and n(pp, hn) = puB(pn, hyn). Then, using Loeve’s
inequality (see Theorem 9.28 in Davidson (1994)), we obtain

: Bulha) = Blpw ha)] it ut,
=t ( 90 o) ) <<n - hnm%)
9> = 1) [0y ) = 1Py )]\ * AT

Note that the first term on the right-hand side in the previous expression goes to zero in

probability due to part (i) in Lemma C.6, Markov’s inequality, and Assumptions B.1. The
second term on the right-hand side in the previous expression goes to zero in probability due

to part (ii) in Lemma C.6, Markov’s inequality, and using that

E[yi,tfl] = E[éﬂ,()(pm t— 1)4] < g(ﬂm” - hn)44K4 ) (0'21)
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where the inequality holds due to Lemma C.1 and g(p,,t — 1)* < g(p,,n — h,)* for all
i < n — hy,. This completes the proof of R is o, (1).

To prove that R is o, (1), note that we can write:

n—hp 4

R = (9l ha)lpulhe) = )

since Upi(hy) — Unt = (Pn(hn) — p)yi—1 . Note that the right-hand side in the previous
expression goes to zero in probability due to part (iii) in Lemma C.6, Markov’s inequality,
and using (C.21). This completes the proof of Ry is 0p (1). Finally, Markov’s inequality
and Assumptions B.1 implies that Ry is O, (1). While Markov’s inequality and Lemma C.1
implies R, is O, (1). m

C.6 Proof of Proposition B.2

Proof. For any € > 0, define the event E,. = {|R,(1)| < ¢:(1,1 — o) — ¢(e)}, where

Y(€) = Z1—aj2-3¢/2 — Z1—aj2—2. and 2z, is the a-quantile of the standard normal distribution.

We will prove that for any (small) € > 0 the following claims hold,

lim P, ([1/L,L] C C},_gp(hn,1 — ) | Epe) =1, (C.22)
n—oo
liminfP,(E,.) > 1 —a — 4e . (C.23)
n—oo

These two claims are sufficient to conclude that

liminf P, ([1/L,L] C Cj_p(hn,1 —a)) > 1 —a —4e .

n—oo
Since this holds for any (small) € >), it implies the claim of the proposition.

Claim 1: (C.22) holds. To verify this, we first rewrite the lower and upper bounds of
C_or(hy 1 — ) using the definition of R, (1) as in (6):

la—ar

A hn h
(Bu() = 5a(es(1,1 =) " = (1= erfn = o)™ (C.24)
(Bu(1) + 5111 - a))h" = (1= c1/n+ Coa)™ (C.25)

where (1 = S, (D){—R,(1) + (1,1 —a)} and G0 = $,(D){R.(1) + (1,1 —a)} .

18



Note that we have (,1 > 5,(1)¢(€e) and (,2 > 5,(1)¥(€) conditional E, .. Additionally,
we can obtain that
50(1) = & n A1+ 0,(1)) (C.26)

which follows by the formula in (4), Lemma C.7 and part 2 of Lemma B.1(adapted for the

1/2

i.i.d. case that we consider in this proposition), and because h, /n'/* — ¢ as n — occ.

Since h,/\/n — ¢ > 0 as n — oo, it holds that lim, ,o(1 — Cn~Y4)" — 0 for any
positive constant C. This implies that conditional on E, ., we have that the lower bound of
O*

la—ar

(h,1 — «) goes to zero. To see this, consider the following derivations using (C.24),

hn

(1= erfn—Gu)'™ £ (1 - (1 4 0,(1))(6)

where (1) holds by definition of ¢, ; conditional on E,, (C.26), and because (¢) is positive
by definition. Since 1+ 0,(1) is larger than 1 — ¢ for any small § > 0 with a high probability
for any n sufficiently larger, we can conclude that the right-hand side of the previous display

goes to zero with a high probability conditional on F,,.

The previous derivation concludes that the lower bound of C}

 _ar(Py 1 — ) goes to zero

conditional on E,,, which implies that the lower bound is asymptotically lower than 1/L con-

ditional on F,,. Now we will show that the upper bound of C}

la—ar

(h,1— «) is asymptotically
larger than L conditional on E,,. To see this, consider the following derivation using (C.25),

(1 crfnt o)™ 2 (1= ei/n+ eI (14 0 (0)0(e)

214 (—erfn+ A2+ 0, (1))
= 1+ 0(n™"2) + "0/ (1 + 0,(1)) (hn/V/)

where (1) holds by definition of ¢, o conditional on E,, (C.26), and because 1 (¢) is positive
by definition, and (2) holds by Bernoulli’s inequality. Since 14 o0,(1) is larger than 1 —§ for
any small 6 > 0 with a high probability for any n sufficiently larger, we can conclude that the
right-hand side of the previous display goes to infinity with a high probability conditional
on E,. In particular, the upper bound of C},_,.

conditional on FE,. This completes the proof of claim 1.

(h,1 — «) is asymptotically larger than L

Claim 2: (C.23) holds. We first note that the following inclusion
{1B2(D)] < z1-ay2-2c) S {IRn(D)] < 6 (L1 =) = 9(e)} = B
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holds with a high probability due to part 1 of Lemma B.3 (adapted for the i.i.d. case that
we consider in this proposition). We then observe that the probability of the left-hand side
of the previous expression goes to 1 — o — 4¢e due to Theorem B.1. This completes the proof

of claim 2. m

D Proof of Auxiliary Results: Asymptotic Refinements

D.1 Proof of the Lemma B.4
Proof. By Lemma D.1, there exists a random variable R, (h) such that
Py (| Bath) = Bu®)| > n77) < O (Blul] + B[] + Elui*]) |
where
Ro(h) = (n — W)V2T ( ZXt, o?, Y, )

and the sequence {X; : 1 <t < n — h} is defined in (B.4). Due to Lemma D.1, we know T
is a polynomial. Define J,(z, h, P, p) = P, <Z%n(h) < x) Using Bonferroni’s inequality, we

conclude
P, (Ru(h) < z) — P, <Rn(h) < a:) |< D, +P, (]Rn(h) - an)‘ > n+6> .

Therefore, sup,cg |Jn(x, h, P, p) = Ju(z, h, P, p)| < D, +Cn~1=¢ (Ellw|*] + E[u*] + E[uf*),
which completes the proof of the Lemma. Note that the constant C is defined in Lemma

D.1 and only depends on a, h, k, C,, and ¢,. m

Lemma D.1. Suppose Assumption 5.1 holds. For any fired h € N and a € (0,1). Then,

forany p € [-1+a,1—a] and e € (0,1/2), there exist a constant C' = C(a, h,k,Cy,c,) > 0,

where k > 8(1 + ¢€)/(1 — 2¢), and a real-valued function T (- ;02,441, p) : R® — R, such that
1. T(0;0%,45,p) =0,

2. T(x;0%,43, p) is a polynomial of degree 3 in x € R® with coefficients depending con-

tinuously differentiable on o, 13, and p,

3. P, (‘Rn(h) - Rn(h)‘ > n*H) < Cn~ (Ellu|*] + E[u*] + Eu*])
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where 0 = Eplu?], ¥} = Ep[uf],

Ro(h) = (n— WT( E}&aw@>

and the sequence {X; : 1 <t < n — h} is defined in (B.4). Furthermore, the asymptotic

variance of R, (h) equals one.

Proof. The proof has two main parts. We first use Lemmas D.2 and D.3 to approximate

R, (h) using functions based on &, u;, and y;_1. We then replace y;_; by z;_1. We specifically

define the polynomial 7.

Part 1: The derivations presented on page 1811 in Montiel Olea and Plagborg-Mgller

(2021a) implies

i &hi(h)
N 1/2
(i &myau(n)?)

Rn(h) =

where &;(p, h) = Ze 1 P e, u(h) = yr— pn(h)ye-1, gt(h) = Yt+h— <Bn(h)yt + %(@%—1);
and the coefficients (5, (R), 5. (h)) is as in (3) and p, (k) is defined in (5). Define

Sl &lp, )i (h)
n—nh

S u(h)?ig(h)? 1
V(n—h) ’

fn = and g, =

where V = E[&(p, h)2u?] = o* S0, p?"=0. Tt follows that
Ru(h) = (n— h)\PV12f, (14 g,) 7 .
Lemmas D.2, D.3, and D.4 imply
P((n— )2 V2L, > 6) < 5 (B[|w|*] + E[uf*] + E[u*))

and
P((n—h)'"?|g,| > 6) < C5~* (ElJu*] + E[u}*] + E[u{*]) .

Step 1: Define R,,, = (n — h)Y2f,V~1/2 (1 —2gn+ 2¢2). Due to Lemma D.4, we have

P ((n = )2 [Ro(h) = Ry

>4Q§0&WﬂmM+EMﬂ+ﬂﬁm
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since P <n3/ 2

(1+ gn)_l/2 — (1 — %gn + ggi) > (53> < Cok (E[\ut]k] + E[u?*] + E[ufk})

Step 2: Define
> 1/21,-1/2 1 3,
Rf,n = (n - h) V (fl,n + f2,n + f3,n) 1- §gn + ggn ;

where f, = Z?:l fjn as in Lemma D.2. We conclude

P ((n =12 | Ryn = Ry

1
> (54> =P ((n — h)4/2 V_1/2f4,n (1 — 5‘% + ggg)

< Co~* (Ellwl*] + E[ui"] + Eluy*])

> 54>

where the last inequality follows by Lemmas D.4 and D.2.

Step 3: Define

_ ) 1 1 3
Rign = (n— h)Y2y 12 (fl,n + fon + fo0 — ifl,ngn — §f2,ngn + gfmgi) :
Lemmas D.2, D.3, and D.4 imply

P ((n = 12| R = Rgn

> 54) < OO~ (Bl|u|F) + E[u2] + E[u]) .

Step 4: Define

3
_ 1 1 1 3
Ryn(h) = (n—h)\V2V 12 <Z fin = Shngin = Sfing2n = 5 f2ng1n + gfl,ngin) ,
j=1

where g, = Z?Zl gjn as in Lemma D.3. We use Lemmas D.2, D.3, and D.4 to conclude

P ((n = 1) |Rpgn = Ryn()| > %) < OO~ (Blul") + Eluf*] + E[u]) .

Step 5: By Bonferroni’s:

P ((n AL ‘Rn(h) _ Rym(h)‘ > 54> < Co7F (ElJul*) + E[u2*] + E[u*) .
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Part 2: We consider V2T (z; 02,94, p) is equal to the following polynomial

filz) + fax) + fa(x) — % (f1(@)g1(x) + [1(2)ga(x) + fa()g1(2)) + 21‘1(93)91(@2 , (D)

where fl(l’) = T, f2(I) = —0_2(1 - P2)905I67 fs(x) = ‘7_4(1 - P2)$5$6(2/m5 + 962), gl(x) =
V~lzs, and

(Y 2 2 2
(o) =V (Lt = Zaat (=) (sl = D bt = S )

Note that R, ,(h) = VT ((n —h) TP Xy 0?0, p), where
Xt = (ftum U? - 027 (ftut)Q -V, ftU?7 WY1, E Y1, §t2utyt—1, gtufyt—l) .

Since z; = y; + p'z, it follows that

n—~h n—nh
thl Jiyi—1 . Zt:l fezi—a
n—nh n—nh

P ((n — h)Y?

> 5) < C67* (Bu™ + Elu*)

for f; = uy, &, E2uy, &u?. Then, Lemma D.4 and step 5 in part 1 implies

P ((n — h)32

Ry(h) = Ra(h)| > 8*) < C6* (Bllwl'] + B[] + E[uf"]) |

where R, (h) = V2T <(n —h)"U X a{@/ﬁ,p) and the sequence {X; : 1 <t <n—h}
is defined in (C.13). As we mentioned before, the constant C' includes the constants C’s that
appear in Lemmas D.2, D.3, D.5 and D.6 that only depends on a, h, k, C,, and ¢,. Finally,

we take 6 = n(1/2-9/4 g

Lemma D.2. Suppose Assumption 5.1 holds. For any fized h,k € N and a € (0,1). Define

_ S &l h)i(h)

I —

where &(p,h) = Sob_ p" Curye, w(h) = ye — pu(h)y_1, and pn(h) is as in (5). Then, for
any p € [—1+a,1 — al, there exists a constant C' = C(h,k,a,C,) such that we can write

fn - fl,n + f2,n + f3,n + f4,n )
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where

P ((n =Byl > ) < C57 (Eludl*] + E[u*] + Eu)

for any § < (n—h)"? and j € {1,2,3,4}.

Proof. In what follows we use & = &(p, h). Using the definition of p,(h), we obtain
-1
= > " _ Zt 1 WY1 D i1 " St Zt Y
" n—nh n—nh n—nh n—nh '
Let us define the components of f,, as follows:
f Zt 1 gtut
Lm = n—nh
fon = _(1 - ) Z;:{l UtYt—1 >t £tyt 1
2n o? n—h n—h

fan= (1— pz) Z?;h UtYt—1 Z?;h §Yi—1 Zt 1 WeYi—1 Zt 1 ut -
o ot n—~h n—nh n—nh n—nh

Jin = fo— (fin+ fon + f3n) -

Note that by construction f, = 2?21 fijn. Lemma D.6 guarantees that each sample av-
erage in fi,, fan, and fs, verify the conditions to use Lemma D.4, which imply that
P ((n—h)y"?f;n] >6) < C5*E[u*] for j = 1,2,3, where the constant C includes C,

and a.

To prove P ((n — h)"?|f;n] > 6*) < C57* (E[|w/*] + E[u*] + E[u*]), we proceed in two
steps.

Step 1: Define
n—h

W = L= (1= p?)o Py,

n—~h

We can use (1) and algebra to derive the following identity

—1.

- n—h
W, = %+2p0_22t 1 U1 —QM
n—nh n—nh n—nh
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This implies that

fom = (1 _QPQ) <Z?_1h ut?ﬁ—l) (Z?_fl §tyt—1> (Wn+ 02%21}1) '

o n—~h n—~h n—~h

Therefore, fi, = fo — fin — fon — fan 1s equal to
(1—p7) Z?—_lh Utyt—1 ?—_1h §iYi -1 o Y
— = = 1 - —(1-W, — 7.
o2 n—nh n—~h (1+Wn) ( Wn) + n—~h

Step 2: Due to Lemma D .4, it is sufficient to show that

P((n—h)*"1+W,) ™ = (1=-W,)|>8) <C5*Eu* (D.2)

and )
g yn—h

n —

P ((n — h)??

Note that (D.2) follows by part 5 in Lemma D.4 since P(n'/?|W,| > §) < C6~*E[u?*] due
to Lemma D.6 and § < n'/2. Finally, (D.3) follows by Markov’s inequality and Lemma D.5.

> 52) < COEl|u¥] . (D.3)

As we mentioned before, the constant C' includes the constants C’s that appear in Lemmas
D.5 and D.6 that only depends on a, h, k, and C,. =

Lemma D.3. Suppose Assumption 5.1 holds. For any fized h,k € N and a € (0,1). Define

S a(hy?

V(n—h) -1

In

where V = o* 22:1 p2h=0 " &,(h) is as in (3) Gy(h) = yr — pu(h)ye—1, and pu(R) is as in (5).
Then, for any p € [—=1+4 a,1 — a], there exists a constant C' = C(h, k,a,C,,¢,) such that we

can write

gn = GJ1in + 92.n + 93n »

where
P ((n = hY2lgzl = ) < C6~* (BlJunl*] + B[] + Blui*])

for any 6 < (n—h)? and j € {1,2,3}.

Proof. In what follows we use & = &(p,h) = Z?zl p"u,yy. As we did for the case of f,

in Lemma D.2, we utilize the linear regression formulas to define the components of g, as
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functions of the sample average of functions of &, u;, and y;_1:

;:lh(f?u? - V)
n— h

2
Vipn — Z tue 3 ZZ:{L ruy ZZ:{I ftU?
2T g n—nh o? n—nh n—nh
n—h 2 2 n—h n—h ¢2
_ 2 2 [ 21 Wl _ 2(1 = p%) [ 21 Wl P
+ (1 =pY)g(p, h) ( — ) = F— n—h

2
Zt ftyt 1 2(1 — 02) Z?;h §tYi—1 Z?;h ftufyt—l
+<1_p)< r— ) T ( o h )( =

Vgsn =Vgn =V (910 + 920) »

Vgl,n =

where 1! = E[ul] and g(p, h)> = Y, p**9. By construction g, = 23:1 gjn- Lemma D.6
guarantees that each sample average in ¢, ,, and g, verify the conditions to use Lemma D.4,
which imply

P ((n— hYPlgsl > 87) < C~* (Bl + Elui)

for § < (n — h)Y? and j € {1,2}, where the constant C includes C,, a, and ¢, (since
f < 24ect). In what follows we prove P ((n — h)*?|gz,| > 6%) < OO~ (E[u*] + E[uf*]).

First, we write Vg3, = Ry1 + Rg2, where R, and R,» are specified below. We will
prove that P((n — h)*?|V7IR, ;| > §%) < C6*E[uf*] for j = 1,2. To compute gz, we use
equation (3) and the following equality

() =& — (Bu(h) — B(p, ))uy — fialp, W)y

where 7,(p, h) = pBu(h) + An(h). We also use that @ (h) =y — pu(h)yr-1 = w — (pn(h) —
p)yi—1. In what follows, we denote 5 = B,(h), p = pn(h) and 4 = fi,(p, h), and 3 = S0
to simplify the heavy notation. We obtain R, ; is equal to

2o+ U (B )] (Bittia) o 12 fmar - U (B )
+2[(p—/3)+<1;2p2) (%_yh)] <Z§3tzt_1>+w44{<ﬁ B (Ziu)}
rafin e (2] (B0) 0 g U (R
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and we obtain that R, is equal to

— 1— p? n—h 1-p
25 — B)2(p — )(Zutygl)w(n—ﬁ)?(p—ﬁ) (%)H(ﬂ B)(p—p)° (thﬁt% 1)
#48= (0= p) () oy — - 7 (E2) = - ) (E2200
+2(8 - B)(n — 1) (Z“t‘% 1) +2(8 = B)(n—0)(p— p)* <%uiy21)
+ = 07— i (B - ) ais - - ) (B - )
w— i (B2 - B o o) a2
b 18— B 97 405 = D)= o= D)+ 1= = e

Note that P((n — h)*?|V-IR,,| > §%) < C6~" (E[u*] + E[uf*]) follows by Lemmas D.4,
D.6, and D.7, since each term between parenthesis in the definition of R, 2 appears in Lemma
D.6, the terms in brackets appears in items 1-4 of Lemma D.7, and the terms between curly
brackets can be written as the product of terms like parenthesis and brackets terms. Similarly,
P((n—h)*? VIR, 5| > 6%) < C6 (E[u¥] + E[uj*]) follows by Lemmas D.4, D.6, and D.7,
since each term between parenthesis in the definition of R,; appears in Lemma D.6 or in

items 5-8 of Lemma D.7. m

Lemma D.4. Let {W, ; : 1 < j <r} be a sequence of random variables. Suppose that there

exist constants c; and C' such that
P(?’Ll/2|Wn’j| > Cj5) S 05_k
for j=1,..,r and some k € N. Then, for any r > 2 and § < n'/?, we have
L PO ST W] > (S, ¢)8) < 1C5
2. P(n"/?| [1o Wail > (152, ¢)07) < rCs*k .
3. P(n1/2|Wn,1 + H;:Q Wn7j| > (Cl + H;:z Cj)5) S QC(ka .

4. If ein™Y25 < 1. Then, P([Wpo1| > 1—0) < C6~* for any b € (0,1 — c;n~1/26).
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5. If ein™'25 < 1. Then, for any b € (0,1 — c;n~"/25), we have

5 _
6 7/2@}53) < 4067F

1
P (n3/2|(1 W) - (1= S W, 4+ g

5 Wfbl)‘ >

and

_ 2 _
P (n2/2|(1 + Wo1) ™t = (1= Woa)| > )352) < 305" .

1+(1-10
Proof. Bonferroni’s inequality and {|W,, 1| > 1—b} C {n/2[W,, 1| > 10} for b < 1—c;n~ 12§
imply the proof of items 1-4. To prove the first part of item 5, we use Bonferroni’s inequality
to conclude that the left-hand side in item 5 is lower than or equal to the sum of P(|W,, 1| >
1 —b) and
3/2 ~1/2 1 32 5, 72 353
Pln |(1 + Wn,l) — (1 — §Wn71 + an,l)‘ > 1_6b 015 , |Wn71| <1-b]) .
Item 4 implies that the former term is bounded by Cé~*, while the latter term is lower than

or equal to

5 )
P (n3/21—6b7/2’Wn,1’3 > 1_6b77/20:f53’ ‘Wn,l‘ <1- b) ’

where the left-hand side term inside the previous probability used the Taylor Polynomial
error and |W,, ;| <1 —b. By item 2, the above probability is lower than or equal to 3C§~*.
Finally, adding the upper and lower bounds concludes the first part of item 5. The second

part is analogous. m

Lemma D.5. Suppose Assumption 5.1 holds. For fivzed a € (0,1) and k > 1. Then, for any
lp| <1 —a, there exists a constant C = C(a, k) > 0 such that

Ellyn"] < C Ellun|*] , ¥n > 1.
and P(n~'2|y| > §) < C 6 Eljun|**] , ¥n > 1,

Proof. The proof goes by induction. For k = 1, we have |y,| < |p||yn-1|+ |u,|, which implies
that
Ellyal] < Bllunll (1 + 1ol + .+ [p"™") < Eflun]] a™" .

Therefore, the constant C' = a~!. We can also derive 4> = p*y> | +2py,_1u, +u2, which im-
plies E[y;] < p*Elys_1]+2|p| E[|yn-1un|]+E[uz). Using that E[|yn—1unl] = El|yn—1[]E[|un|] <
a 'E[u?], we conclude E[y2] < p*Ely2_i] + (2|pla~t + 1)E[u2], which implies E[y2] <

n
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(2lpla™ + 1) Eu2] (14 p* + ... + p*™7V) < C1(a)E[u?], where Ci(a) = (2(1 — a)/a+ 1)/a.
In this case, the constant C' = C(a).

Let us use C(a) to construct Cy(a) and so on. Suppose we have already computed Cj(a).

Now, let us compute Cii1(a). We have

2k

2k+1 _  2k+1, 2k+1 E : 2k+1 2k+1—4, 2k+1—4, £ 2k+1
n =p Yn—1 + CE P Yn—1 Up, +U’n .

=1
By triangular inequality and similar arguments as before, we obtain

2k
B2 < [P Bl 1]+ 30 CFF o1 B a P B + Bl P
(=1

and by the inductive hypothesis, we know E[|y,_1|** "'~ |E[|uf,|] < Cy_r/aE[|un|***], where
we used that E[|X|*E[|X|"] < E[|X|*"*]. Thus, the inductive hypothesis implies that

2k
E[kaJrl] < |p|2k+1E[|yn71‘2k+l] + E[‘Un‘2k+l] (Z C§k+1‘p‘2k+lféck_z/2 + 1) ’
/=1

in a similar way as in the initial case, we conclude. Note that the final constant C only

involves a and k. The other case is analogous. m

Lemma D.6. Suppose Assumption 5.1 holds. For a given h,k € N and a € (0,1). Then,
for any |p| <1 —a and h € N, there ezist a constant C = C(a, k,r,s,h,C,) > 0 such that

1. P((n—=h)Y(n—h) Y0 upys = med| > 0) < C6TRE [fuy| U]

2. P(((n—h)"?|(n—h)" 3200 Gugys | > 6) < COFE [Juy|(H+9]

3. P((n—h)"2|(n— )7 3000" Guf — V| > 30) < COME[ui*]

4. P((n—=h)"V2|(n— k)~ 300 Guyia| > 30) < C6FEluj]

5. P((n—h)"?|(n—h) Y0 R — otg(p, h)2(1 — p*) 7! > 56) < COFE[uf]

1/2
for-any 0 >0 and n > h, where § = §(p, h) = 22:1 P gy, g(p,h) = (Z?Zl Pz(h_€)> )

and m,s = E [u{ <Zj21 pj_IUt_j>s:| .
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Proof. Define the filtration F; = o(u, : t < j). In what follows, we use Markov’s inequality,
Lemmas D.4, D.8, and D.5. The constant C' will replace other constants and will only depend

ona, k, r, s, h, Cy, and the constants that appear in Lemmas D.8 and D.5.

Item 1: We prove this item by induction on s. First, consider s = 0 and » > 0. Note
that {(u] — Efu}], F;) : 1 <t < n — h} define a martingale difference sequence. Therefore,
Markov’s inequality and Lemma D.8 imply P( (n — h)Y2|(n — h) "' S0 ul — myo| > 6) <
Co~"FE [|u|™], since m,o = E[u;]. Let us suppose that item 1 holds for any (r,s) such
that 7 > 0 and s < sg (this is a strong inductive hypothesis). Next, let us prove item 1 for
(r,s0+1). We write

n—nh
(TL - h)il u;yfo+1 mr,so+1 = [1 + 12 )
t=1
where I = (n—h) ™ S0 (u = myg) it and I = (n—h)~ S0 o (42 = mo i)

Note that {((u]; —m;p) ytOJrl Fi) 11 <t <n—h} define a martingale difference sequence;
therefore, we conclude that P((n — h)Y2|I;| > 0) < C6 FE[|u,|F+50+1)] using Markov’s

inequality and Lemmas D.8 and D.5. Now, let us write

so+1 s + 1
so+1 __ so+l _ so+1 so—i-l 0 so+1 j ] so+1—j
y' = (pye—1 + ue) + Uiyt

which implies the following identity

n—h s so+1
s0+1 1 so+l _ ytOH — so+1 so+1—j -1 i so+1—j
(1=p ) (n=h)" >yt = — +> - p Zuty :

t=1 j=1 J

In a similar way, using z; = > i>1 /' ~tu,_; instead of y;, we can derive the following identity

so+1
s S0 + 1 s —J
(1= p " mo sps1 = Z ( j >P Iy g1 -
j=1

Using that |m,.o|* = |E[uf]|* < E[|u¢|™], the previous two identities, the inductive hypothesis
to (n—h)™! ::lh wly o — Mjsot+1—; for 3 =1,...,50+ 1, and Lemmas D.5 and D.4, we
conclude that P((n — h)Y2|I,| > 0) < CO~FE[Ju,|Fr+50+Y] which completes the proof due

to Lemma D .4.
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Item 2: Consider the following derivation for a sequence of random variable f; € F;:

n—h n—h h n—h t+h n
E — E E h—¢ _ § : t+h—j _

&l = P U fir = E Y Juj fi= E Ujbn,j )
t=1 t=1 ¢=1 t=1 j=t+1 j=1

where b, ; = Z]—] WP T{1 <t < n— h}. Note that {u;b,; € F; : 1 < j <n-—h}

defines a martingale difference sequence and

Efusba|] < B Y7 [ EllugME(fFI{L < t < n — R}

t=j—h

< CrpaBlluw]"] 1<T§1<%LX_}LE[|ft|k] :

where Cl o = RF1300 (1 — a)®* 9% Now we take f, = uly; , and use E[july; |*]
CE||us|"*] E]|uy|**] due to Lemma D.5. Finally, Jensen’s inequality implies E[|u|*]E[| f:|¥]

E[|u |tk We conclude due to Lemma D.S.

IAIA

Ttem 3-4: We can write (n —h)~' 320 €2u? — V and (n — h) ' 3207 w1 as the sum
three martingale difference sequences. For item 3, we use the same decomposition used to
prove (C.16) in the proof of Lemma C.4. For item 4, a similar decomposition is possible.
For both items, we can conclude as in the proof of item 2 by using Bonferroni’s inequality

and Lemma D.8; therefore, the details are omitted.

Item 5: Let us write Z?:_lh Ey2 | —oatg(p, h)*(1 — p?)~1 as the sum of three terms:

>

n n n—

> Wk = Mg+ Y widng + gl h)Pot (1= p)TY (0721 = pAyE, — 1)

j=1 7=1 1

<.
Il

where b, ; = 337”1 S PPy ({1 <t <n—h} and

j—1 j—t—1

dnj = Z Z Ure,p” TR {1 <t <n—h}.

t=j—h fla=1

Note that (u} —0?)by,; and u;d,, ; define two martingale difference sequences with respect

to Fj_1. By Lemma D.8 and similar derivations as in the proof of item 2, we obtain

L= P(|(n=h)""*> (u = 0| > 6) < 6 FCE[u}"]

J=1
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and

L=P(|(n=h)""*> ud,;| >06) <5 FCE[u*] |

j=1
for some constant C' that depends on h, k, and a.
By item 1 (r =0 and s = 2) and mgq = 0%(1 — p?)~', it follows that
g(p, h)*o" =
Iy = P(|(n—h)"P=Em ) (072 (1= p)yiy = 1) > 0) < 67CB["]
7=1
for some constant C' that depends on h, k, a, and C,.

Finally, Bonferroni’s inequality and the previous inequalities imply
P( (n—h)"2|( Zét Vs = 0'g(p, h)*(1 = p*) 7' > 50) < 6TFCE[w"]

where the constant C' absorbs all the previous constants. m

Lemma D.7. Suppose Assumption 5.1 holds. For fized h,k € N and a € (0,1). Then, for
any |p| <1 —a, there exist a constant C = C(a, k, h,Cy) > 0 such that

Ry _
1. P ((n = 022 ]pu(h) - p— (1= Po~2Zikuers | 5 52) < 5 Blu

A —o 3 &(ph)u
2/2 5n(h) _/B(pv h) -0 2%

) < C6F Bu¥

o2(n—nh) o2(n—h) > < OdikE[u?k]

P ((n —h)
3 P ((n _ h)2/2 An(h) — (1—p?) X7 €e(ph)ye—1 + P &e(p,h)u
P ((n h)

20210, 1) = nlp, ) — LU | > ) < Co R B[u]
5. P(n'2?|p, — p| > 0) < C6FE[u?]

6. P(n'/?B,(h) — B(p, h)| > 6) < COFE[uz]

7. P03 (k)| > 6) < Co*EBlud*]

8. P(n'?|, —n| > 6) < CoFE[u]

for any & < n'/%, where p,(h) is as in (5),

(Bu(h), An(h)) is as in (3), and &(p,h) =
Sy P e a(py B) = pBa(h) + An(R), n(p, k) = pB(p,

h).
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Proof. To prove item 1, we first use the definition of p,(h),

ﬁn(h) —p= (n_ )_1 Z?_lhutyt 1 _ ( )Zutyt 1(1—|—W)

(n—h)~ Zt L Vi 02(n—h)

where W, = (1 — p*)o~2(n — h)~"' 32/-"y> | — 1. Using this notation, we have

o A=) Yy (1= %) Y us 1
mlh) =P = 0 = prrmy s el (CR RO Rt

Since P(n'/?|(n — h) "' 20wy, 1| > 6) < C6~*E[u?*] holds by Lemma D.6, it is sufficient
to show that P(n'/?|(1+ W,)™! — 1| > §) < CO*E[u?*] due to Lemma D.4. To prove the
last inequality we use P(n'/?|W,| > 6) < Cd~*E[u?*] (which holds by Lemma D.6) and part

5 in Lemma D .4.

The proof of items 2-3 follows from the same arguments as before; therefore, the details
are omitted. Finally, the proof of item 4 follows by the results of items 2 and 3, the definition
of N.(p,h) and n(p,h), and Bonferroni’s inequality. Items 5-8 are implied by items 1-4,

Bonferroni’s inequality, and Lemma D.6. m

Lemma D.8. Let {Z, : 1 <t < n} be a martingale difference sequence. Then, for any
k > 2, we have

S dkﬁn,k )

n k
n—l/? Z Zt
t=1

where B =n"t> " E[|Z:/*] and di, = (8(k — 1) max{1,2"3})F.

Proof. See Dharmadhikari et al. (1968), where this lemma is the main theorem. m

D.2 Proof of the Lemma B.5
Proof. For item 1, for any fixed € > 0, there exist Ny = Ny(¢€) such that the next inclusion
{1pul > 1—a/2} S {n'?|py — p| > 0>} U{|p| > 1 —a} ,
holds for any n > Ny. Since |p| < 1 — a, we conclude
P (|pnl > 1 =a/2) < P (n'|p, — p| > n"*7¢) < Con™ ' “E[ui™]
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for k1 > 2(1 4 €)/(1 — 2¢), where the last inequality follows from Lemma D.7 in Appendix
D.1 by taking § = n'/>=¢. This proves item 1 since Cy E[uZ"] < C' = C(cy, k1, Cy).

For item 2, we use the definition of @, in (13), 4; = y; — puy—1, Where p, is as in (12),
and the model (1) to obtain

n n

n

-1 ~7 1 —1

n Y =0ty (=) =0t (ut (o= pu)yer — )"
t=1 t=1 t=1

where @ = n~ ! 3" w4+ (p — po)n > 1 1. Using the multinomial formula and the

. . 1 n ~p s
previous expression, we have that n=' ) "\ 4} is equal to

n Z Z ( ' ) upt ((p— pn)tp—1)” (=)™ = I + I + Eluj] |

r1,ro,Tr
t=1 ry4rgtrg=r N 1272773

where

r ~ 7 LT
I = Z (7“1,7‘2,7“3) (p = pn)™(=) { Z“tlthI m?‘lm}

ritretrz=r

D o )<p—ﬁn>’"2<—6>r3mm,r2—E{uﬂf{m:r}

1,72, T
ri+re+r3=r 17273

2
j>1

Note that Lemmas D.4, D.6, and D.7 in Appendix D.1 imply that P(|p — p,| > n™¢) <
Cn=17¢ P(Ja| > n™¢) < Cn~17¢ and P(In =t 300 ul 'y — My | > n7¢) < On~17¢ for
some constant C. Therefore, Lemma D.4 implies P(|[;] > n™¢) < Cn~'"¢ for j = 1,2. This
implies that, for a fixed r, we have P(n=' Y"1 4y — Eu}]| > n™¢) < Cn~ 1<

My iy = E

For item 3, we note that item 2 implies P(jn~' > 7" | @7 — E[uf]| > Eui]/2) < Cn~'7¢ .
Therefore, we conclude item 3 by taking C, = FE[u?]/2. For item 4, we note that item 2
implies P(|n=' >0 4* — Fuf*]] > 1) < Cn~'7¢ . Then, we conclude item 4 by taking
M=FE[u*]+1. =

D.3 Proof of Theorem B.2

Proof. The proof of this theorem has two steps.

34



Step 1: The sample average (n — h)~'/? f;lh X; has a valid Edgeworth expansion up to
an error o (n™%/?) due to the results in Gotze and Hipp (1983). Assumption B.2 and the
definition of X in (B.4) guarantees that we can use Theorem 1.2 in Go6tze and Hipp (1994),
and this in turn implies that we can use the results in Gotze and Hipp (1983) (Theorem 2.8
and Remark 2.12). We obtain an approximation error of o (n*?) since E[|X;|°] < 4o,

which holds due to Assumption B.2.(iii).

Step 2: The proof of Theorem 2 in Bhattacharya and Ghosh (1978) and the Edgeworth
expansion for the sample average (n —h)~'/2 ;:{L X, guarantee the existence of Edgeworth
expansion for the distribution .J, defined in (B.6). Furthermore, the function q;j(z, h, P, p)
for 7 = 1,2,3 is a polynomial in z with coefficients that are polynomials of the moments of
X; (up to order j+2) since the sequence X is strictly stationary (|p| < 1). In particular, the
coefficients of the polynomial ¢;(z, h, P, p) for j = 1,2 are polynomials of moments of P (up
to order 12) and p since the moments of X; can be computed using the moments of u, and
p. Moreover, g;(z,h, P,p) = (—1)/q;(—z, h, P, p) since the sequence X; is strictly stationary.

D.4 Proof of Theorem B.3

Proof. The proof has two steps.

Step 1: Define the events E,; = {|p.| <1—a/2}, E,o={n 'Y @ > C,}, and E, 3 =
{n=t >0 uf*t < M}, where C. and M are as in Lemma B.5. Define E,, = E, . NE,oNE, ;.
By Lemma B.5 and Assumption 5.1 it follows that P(ES) < Cyn~'7¢ for some constant
C5 that depends on the moments of u;. Since k > 8, it follows that, conditional on FE,,
the empirical distribution P, verifies part (i) and (iii) of Assumption B.2. It is important
to mention that Gotze and Hipp (1994) use part (ii) of Assumption B.2 to guarantee the
dependent-data version of the Cramer condition that appears in Gotze and Hipp (1983); see
Lemma 2.3 in Gotze and Hipp (1994).

Step 2: Condition (iii) in Lemma 2.3 in Go6tze and Hipp (1994) holds for the bootstrap
sequence Xp, since it holds for the original sequence X;, otherwise the function F' in (B.3)
verifies equation (8) in Gotze and Hipp (1994). Therefore, the dependent-data version of
the Cramer condition holds for the bootstrap sequence Xj,. The results in Gotze and Hipp
(1994) implied that Edgeworth expansion exists for the sample average. Then, conditional

on the event F, we can repeat the arguments presented in the proof of Theorem B.2. m
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E Additional Tables

This appendix presents the additional results of the simulations.

P h RB RBper—t RB}wg WB WBper—t GBLR AA AAhCQ AAhcg
Design 1: Gaussian i.i.d. shocks

095 1 035 035 0.35 0.35 0.35 0.13 0.33 0.34 0.35
6 083 081 0.83 0.86 0.84 0.54 071 0.73 0.74

12 1.07 1.03 1.07  1.12 1.09 0.81 0.89 0.91 0.93

18 1.15 1.11 1.15  1.21 1.17 0.97 0.98 1.00 1.03

.00 1 035 0.35 0.35 0.35 0.35 0.07  0.33 0.34 0.35
6 097 093 0.97 1.00 0.96 042 080 0.82 0.84

12 1.51 1.41 1.51  1.57 1.48 0.77 112 1.15 1.17

18 2.01 1.83 2.01  2.09 1.92 1.07 1.36 1.39 1.42

Design 2: Gaussian GARCH shocks

095 1 044 0.43 0.44 0.46 0.45 0.13 041 043 0.44
6 093 0091 0.94 1.00 0.98 0.54 080 0.82 0.84

12 1.10 1.06 1.11  1.19 1.15 0.799 091 094 0.97

18 1.13 1.09 113 1.22 1.18 094 095 0.98 1.01

1.00 1 0.44 0.43 0.44 0.45 0.45 0.07 0.41 0.42 0.44
6 1.10 1.06 111 1.7 1.13 042 091 0.93 0.96

12 1.60 1.50 1.61 1.73 1.63 0.77 118 1.22 1.25

18 2.04 1.86 2.05 221 2.04 1.06 1.37 1.41 1.45

Design 3: t-student i.i.d. shocks

095 1 033 033 0.34 0.33 0.33 0.13 031 0.32 0.33
6 081 0.79 0.82 0.84 0.82 0.54 0.68 0.71 0.73

12 1.05 1.02 1.06 1.10 1.07 0.80 0.86 0.89 0.93

18 1.14 1.10 1.15  1.19 1.16 0.97 094 0.98 1.02

.00 1 033 0.33 0.34 0.34 0.33 0.07 0.31 0.32 0.33
6 094 0091 0.95 097 0.94 042 077 0.79 0.82

12 1.49 1.39 1.50 1.54 1.45 0.77 1.07 1.11 1.16

18 1.96 1.79 1.98  2.03 1.87 1.08 130 1.35 1.41

Design 4: mix-gaussian GARCH shocks

095 1 046 0.45 0.46 0.46 0.45 0.13 0.42 0.43 0.44
6 089 087 0.90 0.96 0.94 0.55 0.77 0.79 0.82

12 1.01  0.98 1.02  1.11 1.07 0.78 0.86 0.88 0.91

18 1.02 1.00 1.03 1.12 1.08 0.88 0.89 0.91 0.94

1.000 1 046 045 0.46 0.46 0.46 0.08 042 0.43 0.44
6 1.06 1.01 1.07  1.12 1.09 0.45 0.87 0.90 0.92

12 1.50 1.40 1.51  1.62 1.53 0.79 1.11 1.14 1.18

18 1.88 1.71 1.89  2.06 1.90 1.08 1.28 1.31 1.35

Table E.1: Median length of confidence intervals for 5(p,h) with a nominal level of 90% and
n = 95. 5,000 simulations and 1,000 bootstrap iterations.
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P h RB RBp@n,t R,thg WB WBperft GBLR AA AAhCQ AAhcg
Design 1: Gaussian i.i.d. shocks

095 1 80.32 77.86 80.36 79.80  77.42 33.00 80.14 79.98 79.98
6 92.02 8844 92.00 91.92  89.02 85.68 91.88 91.92 91.84

12 91.82 90.14 91.74 91.94  90.56 88.80 91.24 91.28 91.24

18 91.90 90.36  91.98 91.72  90.22 89.30 91.38 91.40 91.42

1.00 1 79.04 76.14 79.12 79.50 = 76.40 15.28 79.32 79.34 79.24
6 92.06 87.66 92.22 91.82 88.64 75.14 91.88 92.02 91.94

12 9256 89.86  92.70 92.78  90.12 84.96 93.06 93.00 93.06

18 92.06 90.72  92.08 92.04  90.50 87.54 92.08 92.14 92.18

Design 2: Gaussian GARCH shocks

095 1 8448 82.16 84.62 84.64 8288 41.62 84.26 84.46 84.62
6 9230 89.74 9236 9244  89.18 87.80 9222 92.20 92.20

12 9194 90.44 91.90 92.14  90.28 89.90 91.72 91.70 91.64

18 91.76 90.70  91.76 91.66  90.52 90.30 91.50 91.56 91.58

1.00 1 84.30 8148 84.46 84.36  82.22 16.94 84.34 84.42 84.38
6 9252 8944 92.64 92.70  89.50 75.92 92,62 92.66 92.72
129278 90.28  92.86 92.40  90.06 85.76  93.02 9286 92.94

18 92.14 90.78  92.12 9220  90.32 88.18 9228 9232 92.28

Design 3: t-student i.i.d. shocks

095 1 7836 74.78 7854 T77.46  T74.68 32.14 7834 78.02 78.32
6 91.80 88.08 91.80 92.08 88.34 86.58 91.72 91.60 91.54

12 91.84 9040 92.00 91.74  90.08 88.90 92.08 92.06 92.06

18 91.74 89.86  91.50 91.70  89.82 89.52 91.32 91.32 91.44

1.00 1 7748 7344 7798 76.18  73.88 14.62 7730 77.50 77.68
6 92.00 88.28 91.78 92.06  88.08 73.00 92.02 91.78 91.72

12 9290 89.62 92.80 92.80  89.62 83.60 92.82 9282 92.66

18 92.16 90.26  92.20 92.36  90.60 86.60 92.30 9242 92.40

Design 4: mix-gaussian GARCH shocks

095 1 9292 86.04 9340 93.76  91.70 47.00 92.64 92.84 93.18
6 93.68 91.62 93.72 93.64 92.00 90.54 93.72 93.78 93.80
129248 91.64 9238 9254  91.70 90.92 92.60 92.60 92.52

18 92.00 91.26 91.82 91.78  90.76 90.86 91.70 91.62 91.74

1.00 1 93.14 84.72 93.72 93.54  91.42 20.76  92.78 93.18 93.44
6 9420 9186 9420 9396 92.14 80.00 94.52 94.58 94.50

12 9230 9148 9228 9240  91.58 87.54 9288 9288 92.80

18 9226 92.12 9226 92.16 91.64 89.22 9226 9230 92.20

Table E.2: Coverage probability (in %) of (size-adjusted) confidence intervals for 8(p, h) x 0.9 with
a nominal level of 90% and n = 95. 5,000 simulations and 1,000 bootstrap iterations.
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P h RB RBper—t Rthg WB WBper—t GBLR AA AAhCQ AAhcg
Design 1: Gaussian i.i.d. shocks

095 18 89.44 87.52 89.46 89.66  88.74 90.02 8720 8740 87.68
40 90.30 8792  90.28 91.06  88.98 90.02 88.74 89.08 89.48

1.00 18 88.62 88.78 88.56 89.14  89.58 90.66 82.16 82.70 83.02
40 86.56  84.80  86.52 86.64  85.78 90.66 78.56 78.88 79.16

Design 2: Gaussian GARCH shocks

095 18 86.64 86.44  86.70 88.58  88.20 81.98 84.28 84.62 85.22
40 89.18 86.84  89.24 90.36  87.90 81.98 8746 87.88 88.32

1.00 18 87.10 87.50  87.22 89.26  89.72 87.56 80.82 81.28 81.94
40 84.10 8256  84.10 85.46  85.16 87.56 76.54 76.88 77.30

Design 3: t-student i.i.d. shocks

0.95 18 89.06 88.04 89.06 89.82  88.78 89.96 86.04 86.68 87.38
40 89.84 8726  89.94 90.66  88.70 89.96 88.04 88.72 89.46

1.00 18 89.36 88.96  89.54 89.98  §89.42 90.92 8236 83.00 83.64
40 85.96 8490  85.82 86.52  86.24 90.92 7790 7854 79.28

Design 4: mix-gaussian GARCH shocks

095 18 83.00 86.32 83.10 84.50  87.50 83.20 81.22 81.54 82.00
40 87.20 86.18 87.24 88.64  87.56 83.20 86.00 86.50 87.02

1.00 18 84.06 88.68  84.22 86.04  90.42 86.84 76.98 T7.34 7780
40 81.24 84.06  81.20 82.76  85.90 86.84 73.44 7398 74.36

Table E.3: Coverage probability (in %) of confidence intervals for 5(p, h) with a nominal level of
90% and n = 240. 5,000 simulations and 1,000 bootstrap iterations.

E.1 Monte-Carlo Simulations for a VAR model

We consider a Bivariate VAR(4) model as in Montiel Olea and Plagborg-Mgller (2021b):

1 \* 1 U ii.d. 103
Y = PYri—1 T+ Uiy, (1 - §L> Yor = YL Uz (U;Z> - (0’ <0'3 1 )) |

We construct confidence intervals for the reduced-form impulse response of y,; with respect
to the shock uy 4, that is, we set v = (1,0) and i = 2 according to the notation of Section 7.

The confidence intervals that we use are listed below:

1. RB: confidence interval as in (26) based on the LP-residual bootstrap in Section 7.

2. RB,,—+: equal-tailed percentile-t confidence interval based on the LP-residual boot-

strap described in Section 7 and similar to the one described in Remark 4.1.

3. WB: confidence interval as in (26) but using ¢**(h, 1—a) instead of ¢ (h, 1—a), where

n
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c**(h,1 — ) is based on the LP-wild bootstrap, that is, the LP-residual bootstrap

described in Section 7 with a different step 2 as in Remark 3.2.
4. WB,.,_;: equal-tailed percentile-t confidence interval based on the LP-wild bootstrap.
5. AA: standard confidence interval as in Montiel Olea and Plagborg-Mgller (2021a).
Table E.4 presents the results of the simulation in terms of coverage probability and

median length. It reports qualitatively similar results as the ones presented in Section 6.

The confidence interval RB performs better than A A and is similar to WB for all horizons.

Coverage Median length
h RB  RBp—+ WB  WB,,_, AA RB  RB,,—t+ WB WB,,_; AA

p=0.00
1 89.700 89.660 90.160 90.040 89.280 0.232 0232  0.235  0.235  0.228

00.440 89.180 91.200 90.060 88.640 1450  1.440 1487  1.476  1.376
12 89.320 88.780 90.320 89.860 87.480 1.572 1565 1.614  1.605  1.490
36 89.940 89.500 90.760 90.560 88.160 1.657  1.653  1.705  1.701  1.577
60 89.300 89.220 90.220 90.200 87.200 1.771  1.767  1.826  1.824  1.671

p = 0.50
1 89.820 89.800 90.160 90.060 89.380 0.232  0.232  0.235 0.235  0.228
90.340 88.920 91.040 89.860 8R8.040 1.705  1.680  1.744 1.720  1.590
12 89.080 87.820 90.040 88.640 86.660 1.968  1.942  2.017 1.997  1.830
36 89.880 89.460 90.840 90.320 88.160 2.036  2.023  2.095 2.082 1.934
60 89.060 89.060 90.120 90.220  86.500 2.178 2169 = 2.251 2.238  2.048

p=0.95
1 89.740 89.740 90.120 90.080 89.320 0.232  0.232  0.236  0.236  0.229

89.640 88.8380 90.360 89.500 85.060 2.346  2.243 2393 2289  2.084
12 87.960 87.860 88.500 88.660 81.500 4.824  4.374  4.935  4.482  3.786
36 82.740 80.660 83.740 82.020 77.380 6.207  5.640 6421 5836  5.040
60 88.300 87.300 89.380 88.500 82460 6.003 5.644 6.197 5826 5.185

p=1.00
1 89.900 89.780 90.200 90.100 89.420 0.233  0.233  0.236 0.236  0.229
87.420 88.520 87.940 89.180 82.060 2.483  2.333  2.534 2381 2.152
12 82920 87.020 83.960 87.860 71.540 5.950  5.142  6.067 5.266  4.306
36 70.060 73.460 70.800 74.580 46.320 14.159 10.863 14.556 11.188  7.528
60 53.060 57.300 54.340 58.560  28.860 13.932 10.433 14.365 10.767  7.904

Table E.4: Coverage probability (in %) and median length of confidence intervals for 3(p, h) with
a nominal level of 90% and n = 240. 5,000 simulations and 2,000 bootstrap iterations.

39



References

ANDREWS, D. W., X. CHENG, AND P. GUGGENBERGER (2020): “Generic results for

establishing the asymptotic size of confidence sets and tests,” Journal of Econometrics,
218, 496-531.

BHATTACHARYA, R. N. AND J. K. GHOSH (1978): “On the validity of the formal Edgeworth
expansion,” Annals of Statistics, 6, 434—451.

DAVIDSON, J. (1994): Stochastic Limit Theory: An Introduction for Econometricians, Ad-

vanced Texts in Econometrics, Oxford University Press.

DHARMADHIKARI, S. W., V. FABIAN, AND K. JOGDEO (1968): “Bounds on the Moments
of Martingales,” The Annals of Mathematical Statistics, 39, 1719 — 1723.

GOTzE, F. AND C. Hipp (1983): “ Asymptotic expansions for sums of weakly dependent
random vectors,” Z. Wahrscheinlichkeitstheorie verw Gebiete, 64, 211-239.

——— (1994): “Asymptotic distribution of statistics in time series,” Annals of Statistics,
2062-2088.

MONTIEL OLEA, J. L. AND M. PLAGBORG-M@LLER (2021a): “Local Projection Inference
is Simpler and More Robust Than You Think,” Fconometrica, 89, 1789-1823.

(2021b): “Supplement to ‘Local Projection Inference is Simpler and More Robust
Than You Think’,” Econometrica, 89, 1789-1823.

PaiLLips, P. C. B. (1987): “Towards a unified asymptotic theory for autoregression,”
Biometrika, 74, 535-547.

WHITE, H. (2000): Asymptotic Theory for Econometricians, Academic Press.

Xu, K.-L. (2023): “Local Projection Based Inference under General Conditions,” Tech.
rep., No. 2023-001, Center for Applied Economics and Policy Research, Department of

Economics, Indiana University Bloomington.

40



	Proof of Auxiliary Results: Uniform Inference
	Proof of the Lemma B.1
	Proof of the Lemma B.2
	Proof of the Lemma B.3
	Proof of Proposition B.1 
	Proof of Theorem B.1
	Proof of Proposition B.2

	Proof of Auxiliary Results: Asymptotic Refinements
	Proof of the Lemma B.4
	Proof of the Lemma B.5
	Proof of Theorem B.2
	Proof of Theorem B.3

	Additional Tables
	Monte-Carlo Simulations for a VAR model


