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C Proof of Auxiliary Results: Uniform Inference

C.1 Proof of the Lemma B.1

Proof. Notation: We say a sequence of random variables Zn is uniformly Op (1) if ∀ϵ > 0

there exists M > 0 and n0 ∈ N such that Pρ(|Zn| > M) < ϵ for any ρ ∈ [−1, 1] and n ≥ n0.

Similarly, Zn is uniformly op (1) if ∀ϵ, δ > 0 there exists n0 ∈ N such that Pρ(|Zn| > δ) < ϵ

for any ρ ∈ [−1, 1] and n ≥ n0.

Item 1: Consider the following derivation:

g(ρ, n) n1/2 (ρ̂n − ρ) =

(
g(ρ, n)−2

∑n
t=1 y

2
t−1

n

)−1(∑n
t=1 utyt−1

g(ρ, n)n1/2

)
,

where the first term is uniformly Op (1) due to Assumption 4.2. The second term is also

uniformly Op (1) due to the following derivation:

E

[(∑n
t=1 utyt−1

g(ρ, n)n1/2

)2
]
=

1

g(ρ, n)2n

n∑
t=1

E[u2ty
2
t−1] ≤ E[u4t ]

1/2 max
1≤i≤n

(
E[y4t−1]

g(ρ, n)4

)1/2

≤ C
1/(4ζ)
8 C

1/2
y4 ,

1
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where the first inequality follows by Cauchy’s and algebra manipulation and the second

inequality follows by Assumption 4.1 and part(i) of Lemma MOMT-Y in Xu (2023). The

constant Cy4 depends on the distribution of the sequence {ut : t ≥ 1} but does not depend

on ρ. Therefore, we conclude g(ρ, n) n1/2 (ρ̂n − ρ) is uniformly Op (1) for any ρ ∈ [−1, 1],

which conclude the proof of the lemma.

Item 2: Recall that ũt = ût − n−1
∑n

t=1 ût, where ût = yt − ρ̂nyt−1 and ρ̂n is defined in

(12). By Bonferroni’s inequality, it is sufficient to prove that there exists N0 = N0(η) such

that

Pρ

(∣∣∣∣∣n−1

n∑
t=1

û2t − σ2

∣∣∣∣∣ > σ2/4

)
< η/2 (C.1)

and

Pρ

(n−1

n∑
t=1

ût

)2

> σ2/4

 < η/2 (C.2)

for any n ≥ N0 and any ρ ∈ [−1, 1]. Lemma SIG in Xu (2023) adapted for the case of the

AR(1) model implies (C.1). To prove (C.2), we derive the following inequality(
n−1

n∑
t=1

ût

)2

=

(
n−1

n∑
t=1

ut + (ρ− ρ̂n)n
−1

n∑
t=1

yt−1

)2

≤ 2

(
n−1

n∑
t=1

ut

)2

+ 2g(ρ, n)2(ρ̂n − ρ)2

(
n−1

n∑
t=1

y2t−1

g(ρ, n)2

)
,

where we used Loeve’s inequality (see Theorem 9.28 in Davidson (1994)) in the inequal-

ity above. Note that the first term is uniformly op (1) due to the law of large numbers

for α-mixing sequences (see Corollary 3.48 in White (2000)) and Assumption 4.1. Since

g(ρ, n)2(ρ̂n−ρ)2 is uniformly op (1) due to Part 1, it is sufficient to prove that n−1
∑n

t=1

y2t−1

g(ρ,n)2

is uniformly Op (1). The last claim follows by the next inequality

E

[
n−1

n∑
t=1

y2t−1

g(ρ, n)2

]
≤ n−1

n∑
t=1

(
E

[
y4t−1

g(ρ, n)4

])1/2

≤ C
1/2
y4 ,

where the last inequality follows by part(i) of Lemma MOMT-Y in Xu (2023). The constant

Cy4 depends on the distribution of the sequence {ut : t ≥ 1} but does not depend on ρ.

Therefore, n−1
∑n

t=1

y2t−1

g(ρ,n)2
is uniformly Op (1), which concludes the proof of the lemma.

Item 3: Recall that ũt = ût − n−1
∑n

t=1 ût, where ût = yt − ρ̂nyt−1 and ρ̂n is defined in
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(12). By Loeve’s inequality (see Theorem 9.28 in Davidson (1994)), we obtain

(ût − n−1

n∑
t=1

ût)
4 = ((ût − ut) + n−1

n∑
t=1

ût + ut)
4 ≤ 33

(ût − ut)
4 +

(
n−1

n∑
t=1

ût

)4

+ u4t

 .

Therefore, it is sufficient to prove that there exists N0 = N0(η) and K̃4 such that

P

(
n−1

n∑
t=1

(ût − ut)
4 > K̃4/81

)
< η/3 , (C.3)

P

(n−1

n∑
t=1

ût

)4

> K̃4/81

 < η/3 , (C.4)

P

(
n−1

n∑
t=1

u4t > K̃4/81

)
< η/3 . (C.5)

To prove (C.3), we use ût − ut = (ρ− ρ̂n)yt−1, the following equality

n−1

n∑
t=1

(ût − ut)
4 = (ρ̂n − ρ)4 g(ρ, n)4 n−1

n∑
t=1

y4t−1

g(ρ, n)4
,

Markov inequality, and part (i) of Lemma MOMT-Y in Xu (2023). To verify (C.4), we use

(C.2) from the proof of Part 2. Finally, Markov’s inequality and Assumption 4.1 implies

(C.5).

C.2 Proof of the Lemma B.2

Proof. We first prove that there exists M̃ = M̃(M) > 0 and N0 = N0(M) > 0 such that

ρ+
M

n1/2g(ρ, n)
≤ 1 +

M̃

n
, (C.6)

for all n ≥ N0. Note that (C.6) is sufficient to conclude that ρ̂n ≤ 1 + M̃/n since ρ̂n ≤
ρ+Mn−1/2/g(ρn, n).

Let us prove (C.6) by contradiction. That is: suppose that there exist sequences ρk,

M̃k → ∞, and nk → ∞ such that ρk + M/(n
1/2
k g(ρk, nk)) > 1 + M̃k/nk, for all k. The

3



previous expression is equivalent to

M > n
1/2
k g(ρk, nk)(1− ρk) + M̃k

g(ρk, nk)

n
1/2
k

. (C.7)

Define ak = nk(1− |ρnk
|). Consider the derivation to get a lower bound for g(ρk, nk):

g(ρk, nk)
2 = 1 + (1− ak/nk)

2 + ...+ (1− ak/nk)
2(nk−1)

=
{1− (1− ak/nk)

nk}{1 + (1− ak/nk)
nk}

ak/nk{2− ak/nk}

≥ nk

ak
× 1− e−ak

2
,

where the last inequality use that (1−ak/nk)
nk = exp(nk log(1−ak/nk)) ≤ exp(−ak). With-

out loss of generality, suppose that ak → a ∈ [0,+∞]; otherwise, we can use a subsequence.

We now consider two cases. For the first case, suppose ak → +∞. This implies that

n
1/2
k g(ρk, nk)(1− ρk) ≥

(
1− e−ak

2

)1/2

a
1/2
k → ∞ ,

which contradicts (C.7). For the second case, suppose ak → a. This implies that

M̃k√
nk

g(ρk, nk) ≥
(
1− e−ak

2ak

)1/2

M̃k → ∞ ,

which contradicts (C.7). Therefore, there exists N0 = N0(M) and M̃ = M̃(M) such that

(C.6) holds for n ≥ N0. We can adapt the proof to conclude that ρ̂n > −1 − M̃/n for all

n ≥ N0.

C.3 Proof of the Lemma B.3

Proof. We prove only item 1 since the proof of item 2 is analogous. The proof of item 1 has

three steps. First, we can write Pρ

(
|R∗

n,b(h)| ≤ x | Y (n)
)
− (2Φ(x)− 1) = I1 + I2 + I3, where

I1 = Jn(x, h, P̂n, ρ̂n)− Φ(x), I2 = Φ(−x)− Jn(−x, h, P̂n, ρ̂n), and

I3 = Pρ(R
∗
n,b(h) = −x | Y (n)) ≤ Pρ(R

∗
n,b(h) ∈ (−x− ϵ/2,−x+ ϵ/2] | Y (n)) .
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Second, conditional on the event En defined in the proof of Theorem 4.1, the inequality (A.1)

in the proof of Theorem 4.1 implies that |I1| < ϵ/2 and |I2| < ϵ/2 for any n ≥ N2 = N2(ϵ, η)

and any h ≤ hn such that hn ≤ n and hn = o (n). Also, the inequality (A.1) and algebra

manipulation implies |I3| < 2ϵ. Therefore, we conclude

sup
h≤hn

sup
x∈R

∣∣Pρ

(
|R∗

n,b(h)| ≤ x | Y (n)
)
− (2Φ(x)− 1)

∣∣ < 3ϵ , (C.8)

for any n ≥ N2 and any hn ≤ n such that hn = o (n). Third, taking x = z1−α/2−3ϵ/2 in (C.8),

it follows that
∣∣Pρ

(
|R∗

n,b(h)| ≤ z1−α/2−3ϵ/2 | Y (n)
)
− (1− α− 3ϵ)

∣∣ < 3ϵ, which implies

Pρ

(
|R∗

n,b(h)| ≤ z1−α/2−3ϵ/2 | Y (n)
)
≤ 1− α .

By definition of c∗n(h, 1 − α) as in (15), it follows that c∗n(h, 1 − α) ≥ z1−α/2−3ϵ/2 holds

conditional on the event En. We similarly obtain that c∗n(h, 1 − α) ≤ z1−α/2+3ϵ/2 holds

conditional on En.

C.4 Proof of Proposition B.1

Proof of Proposition B.1. We use the general subsequence approach of Andrews et al. (2020)

to show that the uniform result in the proposition holds. We prove that for any sequence

{ρn : n ≥ 1} such that |ρn| ≤ 1 +M/n and any sequence {σ2
n : n ≥ 1} ⊂ [σ, σ], there exists

subsequences {ρnk
: k ≥ 1} and {σ2

nk
: k ≥ 1} such that

lim
K→∞

lim
k→∞

P

(
g(ρnk

, nk)
−2n−1

k

nk∑
i=1

y2nk,i−1 ≥ 1/K

)
= 1 . (C.9)

We consider two cases to prove (C.9). The first case is nk(1 − |ρnk
|) → ∞ for some

subsequence {nk : k ≥ 1}, which considers the subsequence of ρn that stay on the stationary

region or go to the boundary at slower rates. The second case is nk(1 − |ρnk
|) → c ∈

[−M,+∞) for some subsequence {nk : k ≥ 1}, which considers the subsequence of ρn that

goes to the boundary (local-unit-model) or are on it (unit-root model). For both cases,

we assume σ2
nk

→ σ2
0 since any sequence {σ2

n : n ≥ 1} ⊂ [σ, σ] has always a convergent

subsequence. To avoid complicated sub-index notation, we present the algebra derivation

using the original sequence.

Case 1: Suppose n(1 − |ρn|) → ∞ and σ2
n → σ2

0 as n → ∞. This condition implies that
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there exists N0 such that |ρn| ≤ 1 for all n ≥ N0, otherwise there is a subsequence |ρnk
|

in (1, 1 +M/nk] but this cannot occur since nk(1 − |ρnk
|) ∈ [−M, 0]. As a result, we have

g(ρn, n)
2 =

∑n−1
ℓ=0 ρ2ℓn ≤ (1− ρ2n)

−1 that implies

P

(
g(ρn, n)

−2 n−1

n∑
t=1

y2n,t−1 ≥ 1/K

)
≥ P

(
(1− ρ2n)

n

n∑
t=1

y2n,t−1 ≥ 1/K

)
.

Therefore, to verify (C.9) is sufficient to prove that

lim
K→∞

lim
n→∞

P

(
(1− ρ2n)

n

n∑
t=1

y2n,t−1 ≥ 1/K

)
= 1 ,

which follows if we prove
(1− ρ2n)

n

n∑
t=1

y2n,t−1

p→ σ2
0 . (C.10)

We prove (C.10) in two steps.

Step 1: Using Assumption B.1 and yn,t−1 =
∑i−1

ℓ=1 ρ
i−1−ℓ
n un,ℓ, we derive the following:

E

[
(1− ρ2n)

n

n∑
t=1

y2n,t−1

]
=

(1− ρ2n)

n

n∑
t=1

n−1∑
ℓ=1

E[u2n,ℓ] ρ
2(t−1−ℓ)
n I{1 ≤ ℓ ≤ i− 1}

=
σ2
n(n− 1)

n
− σ2

n

n

n−1∑
ℓ=1

ρ2(n−ℓ)
n .

We conclude the right-hand side of the previous display converges to σ2
0 since σ2

n → σ2
0,

n−1
∑n

ℓ=1 ρ
2(n−ℓ)
n ≤ {n(1− |ρn|)(1 + |ρn|)}−1, and n(1− |ρn|) → ∞.

Step 2: We use E[y2n,t−1] = g(ρn, t− 1)2σ2
n to derive the following decomposition

n∑
i=1

y2n,t−1 − E[y2n,t−1] =
n−1∑
ℓ=1

(
u2n,ℓ − σ2

n

)
bn,ℓ + 2

n−1∑
ℓ=1

un,ℓ dn,ℓ ,

where bn,ℓ =
∑n

i=1+ℓ ρ
2(i−1−ℓ)
n and dn,ℓ = bn,ℓ

∑ℓ−1
ℓ2=1 un,ℓ2ρ

ℓ−ℓ2
n . Note dn,ℓ is measurable with

respect to the σ-algebra defined by {un,k : 1 ≤ k ≤ ℓ− 1}.

The decomposition above, Loeve’s inequality (see Theorem 9.28 in Davidson (1994)), and
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Assumption B.1 imply that the variance of (1− ρ2n)n
−1
∑n

t=1 y
2
n,t−1 is lower than

2(1− ρ2n)
2

n2

(
n−1∑
ℓ=1

E
[(
u2n,ℓ − σ2

n

)2]
b2n,ℓ + 4

n−1∑
ℓ=1

E
[
u2n,ℓ
]
E
[
d2n,ℓ
])

.

Since b2n,ℓ ≤ (1−ρ2n)−2 and E[d2n,ℓ] = b2n,ℓσ
2
n

∑ℓ−1
ℓ2=1 ρ

2(ℓ−ℓ2)
n ≤ σ2

n(1−ρ2n)−3 for ℓ = 1, . . . , n−1,

and E[(u2n,ℓ − σ2
n)

2] ≤ E[u4n,ℓ] ≤ K4 by Assumption B.1, the previous display is lower than

2(n− 1)K4

n2
+

8(n− 1)σ4
n

n2(1− ρ2n)
,

which goes to 0 since σ4
n = E[u2n,ℓ]

2 ≤ E[u4n,ℓ] ≤ K4 and n(1−ρ2n) = n(1−|ρn|)(1+ |ρn|) → ∞
as n→ ∞. This proves that the variance of the left-hand side on (C.10) goes to zero, which

proves (C.10) due to step 1.

Case 2: Suppose n(1 − |ρn|) → c ∈ [−M,+∞) and σ2
n → σ2

0 as n → ∞. We first observe

that g(ρn, n)
2 ≤ n exp(2M) due to |ρn| ≤ 1 +M/n and the following derivation:

g(ρn, n)
2 =

n−1∑
ℓ=0

ρ2ℓn ≤ n(1 +M/n)2n = n exp (2n log (1 +M/n)) ≤ n exp (2M) ,

where we used that log(1 + x) ≤ x for all x > −1. By the previous observation

P

(
g(ρn, n)

−2n−1

n∑
t=1

y2n,t−1 ≥ 1/K

)
≥ P

(
exp(−2M)

n2

n∑
t=1

y2n,t−1 ≥ 1/K

)
,

where exp(−2M) is a constant that does not change as n → ∞ and K → ∞. Therefore, it

is sufficient to prove that limK→∞ limn→∞ P
(

1
n2

∑n
t=1 y

2
n,t−1 ≥ 1/K

)
= 1 to verify (C.9),

which follows if we prove

1

n2

n∑
t=1

y2n,t−1
d→ σ2

0

∫ 1

0

J−c(r)
2dr , (C.11)

where J−c(r) =
∫ r

0
e−(r−s)cdW (s) and W (s) is a standard Brownian motion.

To prove (C.11), we rely on the results and techniques presented in Phillips (1987).

Specifically, we adapt his Lemma 1 part (c) for the sequence of models and the drifting

parameter that we consider in this paper. We proceed in two steps. First, we construct

a triangular array {ỹn,t : 1 ≤ t ≤ n, n ≥ 1} that verify (C.11). Then, we prove that the
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constructed sequence verifies that n−2
∑n

t=1 y
2
n,t−1 − n−2

∑n
t=1 ỹ

2
n,t−1 = op(1).

Step 1: Define ũn,t = un,tI{ρn ≥ 0} + (−1)tun,tI{ρn < 0} for all t = 1, . . . , n. Note that

the sequence {ũn,t : 1 ≤ t ≤ n} defines a martingale difference array with the same variance

E[ũ2n,t] = σ2
n and satisfies that E[ũ2n,t] ∈ [σ, σ], and E[ũ4n,t] ≤ K4. Using this notation, we

construct the following triangular array:

ỹn,t = e−c/nỹn,t−1 + ũn,t , ỹn,0 = 0 ,

where c = limn→∞ n(1− |ρn|). Denote the sequence of partial sums by Sn,j =
∑j

t=1 un,t for

any j = 1, . . . , n and Sn,0 = 0. Let us define the following random process

Xn(r) =
1√
n

1

σn
Sn,[nr] =

1√
n

1

σ0
Sn,j−1 if (j − 1)/n ≤ r < j/n ,

and Xn(1) = 1√
n

1
σn
Sn,n. By a functional central limit theorem for martingale difference

arrays (see Theorem 27.14 in Davidson (1994)), we claim that {Xn(r) : r ∈ [0, 1]} converges

to the standard Brownian motion process {W (r) : r ∈ [0, 1]}. To use this result, we prove

(a)
n∑

t=1

ũ2n,t
nσ2

n

p→ 1 , (b) max
t≤n

∣∣∣∣ ũn,t√
nσn

∣∣∣∣ p→ 0 , (c) lim
n

[nr]∑
t=1

E[ũ2n,t]

nσ2
n

= r .

We can verify condition (a) using ũ2n,t = u2n,t, Chebyshev’s inequality and Assumption B.1:

P

(∣∣∣∣∣
n∑

t=1

ũ2n,t
nσ2

n

− 1

∣∣∣∣∣ > ϵ

)
≤ n−2

ϵ2

n∑
i=1

E[u4n,t] ≤
K4

ϵ2n
→ 0 as n→ ∞ ,

for any ϵ > 0. To verify condition (b) holds is sufficient to show that

nE

[
ũ2n,t
nσ2

n

I

{∣∣∣∣ ũn,t√
nσn

∣∣∣∣ > c

}]
→ 0 ,

for any c > 0, where I{·} is the indicator function. If the previous display holds, then

condition (b) follows by theorem 23.16 in Davidson (1994). To verify the previous condition,

note that

nE

[
ũ2n,t
nσ2

n

I

{∣∣∣∣ ũn,t√
nσn

∣∣∣∣ > c

}]
≤ nE

[
ũ4n,t

n2σ4
nc

2
I

{∣∣∣∣ ũn,t√
nσn

∣∣∣∣ > c

}]
≤
E[ũ4n,t]

nσ4
nc

2
≤ K4

nσ2c2
,

where the last inequality uses ũ4n,t = u4n,t and Assumption B.1. Finally, condition (c) holds
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since E[ũ2n,t] = σ2
n.

Using the functional central limit theorem, the continuous mapping theorem, and σn →
σ0, we can repeat the arguments presented in the proof of Lemma 1 in Phillips (1987) to

conclude that n−2
∑n

t=1 ỹ
2
n,t−1

d→ σ2
0

∫ 1

0
J−c(r)

2dr .

Step 2: Define an = |ρn|ec/n. We know yn,t =
∑i

ℓ=1 ρ
i−ℓ
n un,t and ỹn,t =

∑i
ℓ=1 e

−c(i−ℓ)/nũn,t;

therefore, ỹn,t = yn,t −Rn,t if ρn ≥ 0, and ỹn,t = (−1)tyn,t −Rn,t if ρn < 0, where

Rn,t =
t∑

ℓ=1

(
at−ℓ
n − 1

)
e−c(t−ℓ)/nũn,ℓ .

Therefore, we conclude that y2n,t = ỹ2n,t + 2ỹn,tRn,t +R2
n,t. This implies that∣∣∣∣∣ 1n2

n∑
t=1

y2n,t−1 −
1

n2

n∑
t=1

ỹ2n,t−1

∣∣∣∣∣ ≤
∣∣∣∣∣ 2n2

n∑
t=1

ỹn,t−1Rn,t

∣∣∣∣∣+
∣∣∣∣∣ 1n2

n∑
t=1

R2
n,t

∣∣∣∣∣ .
By Cauchy–Schwartz’s inequality, the right-hand side of the previous expression is lower

than or equal to

2

(
1

n2

n∑
i=1

ỹ2n,t−1

)1/2(
1

n2

n∑
i=1

R2
n,t

)1/2

+

∣∣∣∣∣ 1n2

n∑
i=1

R2
n,t

∣∣∣∣∣ . (C.12)

By the result at the end of Step 1, we have n−2
∑n

i=1 ỹ
2
n,t−1 is Op (1). Therefore, it is sufficient

to show n−2
∑n

i=1R
2
n,t

p→ 0 to conclude that (C.12) converges to zero in probability.

To verify the claim, we first observe that ajne
−(i−ℓ)c/n = |ρn|je−(i−ℓ−j)c/n ≤ |ρn|j for all

j = 0, . . . , i− ℓ− 1, which implies that

|Rn,t| =

∣∣∣∣∣
t∑

ℓ=1

(an − 1)(1 + an + ...+ ai−ℓ−1
n )e−(t−ℓ)c/nũn,ℓ

∣∣∣∣∣
≤ |an − 1|

t∑
ℓ=1

(1 + |ρn|+ ...+ |ρn|t−ℓ−1)|ũn,ℓ| .

Using the previous inequality and |ρn|j ≤ (1 +M/n)j ≤ (1 +M/n)n ≤ eM , we obtain

|Rn,t| ≤ eM |an − 1|
t∑

ℓ=1

(t− ℓ)|ũn,ℓ| ≤ eM |n(an − 1)|
n∑

ℓ=1

|un,ℓ| ,
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for all t = 1, . . . , n, where we used that |ũn,ℓ| = |un,ℓ| in the last inequality. Then, we derive

n−2

n∑
t=1

R2
n,t ≤ e2M |n(an − 1)|2

(
n−1

n∑
ℓ=1

|un,ℓ|

)2

.

By Markovs’s inequality and Assumption B.1, we obtain that n−1
∑n

ℓ=1 |un,ℓ| is Op (1).

Analyzing an − 1 = ec/n
(
|ρn| − e−c/n

)
, we can conclude that n(an − 1) = o (1), which

implies that the right-hand side of the previous display converges to zero in probability.

As a result, we conclude that (C.12) converges to zero in probability, which implies that

n−2
∑n

i=1 y
2
n,t−1 − n−2

∑n
i=1 ỹ

2
n,t−1 = op (1) , and by the result at the end of Step 1, we con-

clude (C.11).

C.5 Proof of Theorem B.1

Additional Notation: Define ξn,t(ρn, hn) = yn,t+hn − β(ρn, hn)yn,t and recall β(ρ, h) ≡ ρh.

Algebra shows

ξn,t(ρn, hn) =
hn∑
ℓ=1

ρhn−ℓ
n un,t+ℓ . (C.13)

Proof. The derivations presented on pages 1811 and 1812 in Montiel Olea and Plagborg-

Møller (2021a) imply

Rn(hn) =

∑n−hn

t=1 ξn,t(ρn, hn)ûn,t(hn)(∑n−hn

t=1 ξ̂n,t(hn)2ûn,t(hn)2
)1/2 ,

which is equal to( ∑n−hn

t=1 ξn,t(ρn, hn)un,t
(n− hn)1/2V (ρn, hn)1/2

+

∑n−h
t=1 ξn,t(ρn, hn)(ûn,t(hn)− un,t)

(n− hn)1/2V (ρn, hn)1/2

)
×

(
(n− hn)V (ρn, hn)∑n−hn

t=1 ξ̂n,t(hn)2ûn,t(hn)2

)1/2

,

where V (ρ, h) = E[ξn,t(h)
2u2n,t]. We then follow their approach and prove that under As-

sumption B.1: for any sequences {ρn : n ≥ 1} ⊂ [−1−M/n, 1+M/n], {σ2
n : n ≥ 1} ⊂ [σ, σ],

10



and {hn : n ≥ 1} satisfying hn = o(n) and hn ≤ n, we have

(i)

∑n−hn

t=1 ξn,t(ρn, hn)un,t
(n− hn)1/2V (ρn, hn)1/2

d→ N(0, 1) ,

(ii)

∑n−hn

t=1 ξn,t(ρn, hn)(ûn,t(hn)− un,t)

(n− hn)1/2V (ρn, hn)1/2
p→ 0 ,

(iii)

∑n−hn

t=1 ξ̂n,t(hn)
2ûn,t(hn)

2

(n− hn)V (ρn, hn)

p→ 1 .

Finally, Lemmas C.4, C.5, and C.7 imply (i), (ii), and (iii), respectively.

Lemma C.1. Suppose Assumption B.1 holds. Then, for any (ρn, σn, hn) such that |ρn| ≤
1 +M/n, σ2

n ∈ [σ, σ], and hn ≤ n, we have

E
[
ξn,t(ρn, hn)

4
]
≤ 4g(ρn, hn)

4K4 ,

where g(ρ, k) =
(∑k−1

ℓ=0 ρ2ℓ
)1/2

and ξn,t(ρn, hn) is in (C.13).

Proof. It follows from the proof of Lemma A.7 in Montiel Olea and Plagborg-Møller (2021a).

Lemma C.2. Suppose Assumption B.1 holds. Then, for any (ρn, σn, hn) such that |ρn| ≤
1 +M/n, σ2

n ∈ [σ, σ], and hn ≤ n, we have

E

( ∑n−hn

t=1 ξn,t(ρn, hn)yn,t−1

(n− hn)g(ρn, n− hn)g(ρn, hn)σ2
n

)2
 ≤ n

n− hn
× hn
n− hn

×
√
4K4

σ
,

where g(ρ, k) =
(∑k−1

ℓ=0 ρ2ℓ
)1/2

and ξn,t(ρn, hn) is in (C.13).

Proof. The definition of ξn,t(ρn, hn) in (C.13) implies
∑n−hn

t=1 ξn,t(ρn, hn)yn,t−1 =
∑n

j=1 un,jbn,j,

where bn,j =
∑j−1

t=j−hn
ρt+hn−j
n yn,t−1I{1 ≤ t ≤ n − h}. Note that bn,j is measurable with re-

spect to the σ-algebra defined by {un,k : 1 ≤ k ≤ j − 2}. Using Assumption B.1, we

obtain

E

( n∑
j=1

un,jbn,j

)2
 =

n∑
j=1

E[u2n,jb
2
n,j] = σ2

n

n∑
j=1

E[b2n,j] .

Therefore, the derivation above implies E

[(∑n−hn

t=1 ξn,t(ρn, hn)yn,t−1

)2]
= σ2

n

∑n
j=1E[b

2
n,j].

11



We claim that

E[b2n,j] ≤ hng(ρn, hn)
2g(ρn, n− hn)

2
√

4K4 , (C.14)

for any j = 1, . . . , n. The previous claim and Assumption B.1 imply

E

( ∑n−hn

t=1 ξn,t(ρn, hn)yn,t−1

(n− hn)g(ρn, n− hn)g(ρn, hn)σ2
n

)2
 ≤ nhn

(n− hn)2σ2
n

×
√
4K4 ≤

nhn
(n− hn)2σ

×
√

4K4 .

To verify (C.14), we consider three cases. The first case is j ≤ hn, in which we derive

E[b2j ] = E[(

j−1∑
t=1

ρt+h−jyn,t−1)
2] ≤ (j − 1)E[

j−1∑
t=1

ρ2(t+h−j)y2n,t−1]

≤ hn

(
j−1∑
t=1

ρ2(t+h−j)

)
g(ρn, n− hn)

2
√
4K4

≤ hng(ρn, hn)
2g(ρn, n− hn)

2
√

4K4 ,

where we use Loeve’s inequality (see Theorem 9.28 in Davidson (1994)) in the first inequality

above. In the second inequality, we use E[y2n,t−1] ≤ E[y4n,t−1]
1/2, yn,t−1 = ξn,0(ρn, t − 1),

Lemma C.1, and g(ρn, t−1)2 ≤ g(ρn, n−hn)2 for all t = 1, . . . , n−hn. Note that we also use

j ≤ hn, which also implies the last inequality above. The second case is hn+1 ≤ j ≤ n−hn+1.

We follow the same approach as before and conclude E[b2j ] ≤ hng(ρn, hn)
2g(ρn, n−hn)2

√
4K4.

In the final case, we have j ≥ n− hn +2. Similarly, we obtain E[b2j ] ≤ hng(ρn, hn)
2g(ρn, n−

hn)
2
√
4K4.

Lemma C.3. Suppose Assumption B.1 holds. Then, for any (ρn, σn, hn) such that |ρn| ≤
1 +M/n, σ2

n ∈ [σ, σ], and hn ≤ n, we have

E

( ∑n−hn

t=1 un,tyn,t−1

(n− hn)1/2g(ρn, n− hn)

)2
 ≤ 2K4 ,

where g(ρ, k) =
(∑k−1

ℓ=0 ρ2ℓ
)1/2

.

Proof. It follows from the proof of Lemma E.8 in Montiel Olea and Plagborg-Møller (2021a).

Lemma C.4. Suppose Assumptions B.1 hold. Then, for any sequences {ρn : n ≥ 1} such

that |ρn| ≤ 1 +M/n, {σ2
n : n ≥ 1} ⊂ [σ, σ], and {hn : n ≥ 1} satisfying hn = o(n) and

12



hn ≤ n, we have ∑n−hn

t=1 ξn,t(ρn, hn)un,t
(n− hn)1/2g(ρn, hn)σ2

n

d→ N(0, 1) , (C.15)

where ξn,t(ρn, hn) is in (C.13) and g(ρ, h)2 =
∑h

ℓ=1 ρ
2h.

Proof. We adapt the proof of Lemma A1 in Montiel Olea and Plagborg-Møller (2021a). We

start by writing the left-hand side term in (C.15) as follows

n−hn∑
t=1

χn,t ,

where

χn,t =
ξn,n−hn+1−t(ρn, hn)un,n−hn+1−t

(n− hn)1/2g(ρn, hn)σ2
n

,

for t = 1, . . . , n − hn. Define the σ-algebra Fn,t = σ (un−hn+j−t : j ≥ 1). Note that for any

t = 1, . . . , n−hn, χn,t is measurable with respect to Fn,t. Therefore, the sequence {χn,t : 1 ≤
t ≤ n−hn} is adapted to the filtration {Fn,t : 1 ≤ t ≤ n−hn}. Moreover, ξn,n−hn+1−t(ρn, hn)

is measurable with respect to Fn,t−1 since it is a function of {un,n−hn+j−(t−1) : 1 ≤ j ≤ hn}.
This implies that E[χn,t|Fn,t−1] = 0 since

E[χn,t|Fn,t−1] =
ξn,n−hn+1−t(ρn, hn)

(n− hn)1/2g(ρn, hn)σ2
n

E[un,n−hn+1−t|Fn,t−1]

and by Assumptions B.1 we conclude E[un,n−hn+1−t|Fn,t−1] = E[un,n−hn+1−t] = 0.

The derivation presented above proves that the sequence {χn,t : 1 ≤ t ≤ n − hn} is a

martingale difference array with respect to the filtration {Fn,t : 1 ≤ t ≤ n− hn}. The result
in (C.15) then follows by a martingale central limit theorem (Theorem 24.3 in Davidson

(1994)), which requires

(i)
n−hn∑
t=1

E[χ2
n,t] = 1 , (ii)

n−hn∑
t=1

χ2
n,t

p→ 1 , (iii) max
1≤t≤n−hn

|χn,t|
p→ 0 .

The condition (i) follows by using that E[ξn,t(ρn, hn)
2u2n,t] = g(ρn, hn)

2σ4
n. To prove the

condition (ii) is sufficient to show

Var

(
n−hn∑
t=1

χ2
n,t

)
→ 0 . (C.16)
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To prove (C.16), we first recall that

n−hn∑
t=1

χ2
n,t =

1

(n− hn)g(ρn, hn)2σ4
n

×
n−hn∑
t=1

ξn,t(ρn, hn)
2u2n,t ,

where the second term of the right-hand side of the previous display can be decomposed into

the sum of its expected value and another three zero mean terms:

(n− hn)g(ρn, hn)
2σ4

n +
n∑

j=1

(u2n,j − σ2
n)bn,j +

n∑
j=1

un,jdn,j +
n∑

j=1

(u2n,j − σ2
n)g(ρn, hn)

2σ2
n ,

where bn,j =
∑j−1

t=j−hn
ρ
2(hn+t−j)
n u2n,tI{1 ≤ t ≤ n− hn} and

dn,j =

j−1∑
t=j−hn

j−t−1∑
ℓ2=1

un,t+ℓ2ρ
2h−j+t−ℓ2
n u2n,tI{1 ≤ t ≤ n− hn} .

Note that bn,j and dn,j are measurable with respect to the σ−algebra σ(un,k : 1 ≤ k ≤ j−1}.
By Assumptions B.1 and Loeve’s inequality (Theorem 9.28 in Davidson (1994)), we conclude

E[b2n,j] ≤ hn

j−1∑
t=j−hn

E[ρ4(hn+t−j)
n u4n,t] ≤ hng(ρn, hn)

4K4

and

E[d2n,j] ≤ hnE

(j−i−1∑
ℓ2=1

un,i+ℓ2ρ
2h−j+i−ℓ2
n u2n,t

)2
 ≤ hng(ρn, hn)

4σ2
nK4

for all j = 1, . . . , n.

We use the decomposition presented above, Assumptions B.1, and Loeve’s inequality (see

Theorem 9.28 in Davidson (1994)) imply that the left-hand side of (C.16) is lower than or

equal to

3
∑n

j=1E[(u
2
n,j − σ2

n)
2b2n,j] + 3

∑n
j=1E[u

2
n,jd

2
n,j] + 3g(ρn, hn)

4σ4
n

∑n
j=1E[(u

2
n,j − σ2

n)
2]

(n− hn)2g(ρn, hn)4σ8
n

.

By Assumptions B.1 and the upper bounds that we found for E[b2n,j] and E[d
2
n,j], the previous

14



expression is lower than or equal to

3nhnK
2
4

(n− hn)2σ4
+

3nhnK4

(n− hn)2σ2
+

3nK4

(n− hn)2σ2
.

The previous expression is o (1) since hn = o (n) as n→ ∞. This implies that (C.16) holds.

Finally, to verify that condition (iii) holds is sufficient to show

(n− hn)E
[
χ2
n,tI{|χ2

n,t| > c}
]
→ 0 , (C.17)

for any c > 0, where I{·} is the indicator function. If the condition in (C.20) holds, then

condition (iii) follows by Theorem 23.16 in Davidson (1994). To verify (C.17), note that

(n− hn)E
[
χ2
n,tI{|χ2

n,t| > c}
]
≤ (n− hn)E

[
χ4
n,t

c2
I{|χ2

n,t| > c}
]

≤ (n− hn)
E
[
χ4
n,t

]
c2

=
E [ξn,n−hn+1−t(ρn, hn)

4]E
[
u4n,n−hn+1−t

]
(n− hn)σ8

ng(ρn, hn)
4c2

≤
4K4E

[
u4n,n−hn+1−t

]
(n− hn)σ8

nc
2

,

where the equality above uses Assumption B.1, and the last inequality follows by Lemma

C.1. By Assumption B.1 we obtain (n − hn)E
[
χ2
n,tI{|χ2

n,t| > c}
]
≤ 4K2

4/((n − hn)σ
4c2),

which is sufficient to conclude (C.17).

Lemma C.5. Suppose Assumption B.1 holds. Then, for any sequences {ρn : n ≥ 1} such

that |ρn| ≤ 1 +M/n, {σ2
n : n ≥ 1} ⊂ [σ, σ], and {hn : n ≥ 1} satisfying hn = o(n) and

hn ≤ n, we have ∑n−h
t=1 ξn,t(ρn, hn)(ûn,t(hn)− un,t)

(n− hn)1/2g(ρn, hn)σ2
n

p→ 0 , (C.18)

where ûn,t(hn) = yn,t − ρ̂n(hn)yn,t−1, ρ̂n(hn) is defined in (B.2), and g(ρ, h)2 =
∑h

ℓ=1 ρ
2h.

Proof. A proof can be adapted from the proof of Lemma A.4 and Lemma E.8 in Montiel Olea

and Plagborg-Møller (2021a). Importantly, their Assumption 3 (relevant for the proof) holds

due to Proposition B.1 in Appendix B.

Lemma C.6. Suppose Assumption B.1 holds. Then, for any sequences {ρn : n ≥ 1} such

that |ρn| ≤ 1 +M/n, {σ2
n : n ≥ 1} ⊂ [σ, σ], and {hn : n ≥ 1} satisfying hn = o(n) and

15



hn ≤ n, we have

(i)
β̂n(hn)− β(ρn, hn)

g(ρn, hn)

p→ 0 ,

(ii)
g(ρn, n− hn) (η̂(ρn, hn)− η(ρn, hn))

g(ρn, hn)

p→ 0 ,

(iii) (n− hn)
1/2 × g(ρn, n− hn)× (ρ̂n(hn)− ρn) = Op(1) ,

where η̂(ρn, hn) = ρnβ̂n(hn) + γ̂n(hn), η(ρn, hn) = ρnβ(ρn, hn) = ρhn+1
n , β̂n(hn) and γ̂n(hn)

are defined in (B.1), ρ̂n(hn) is in (B.2), and g(ρ, h)2 =
∑h

ℓ=1 ρ
2h.

Proof. A proof can be adapted from the proof of Lemma A.3 in Montiel Olea and Plagborg-

Møller (2021a). Importantly, their Assumption 3 (relevant for the proof) holds due to Propo-

sition B.1 in Appendix B.

Lemma C.7. Suppose Assumptions B.1 holds. Then, for any sequences {ρn : n ≥ 1} such

that |ρn| ≤ 1 +M/n, {σ2
n : n ≥ 1} ⊂ [σ, σ], and {hn : n ≥ 1} satisfying hn = o(n) and

hn ≤ n, we have ∑n−hn

t=1 ξ̂n,t(hn)
2ûn,t(hn)

2

(n− hn)g(ρn, hn)2σ4
n

p→ 1 ,

where ξ̂n,t(hn) = yn,t+hn − β̂n(hn)yn,t − γ̂n(hn)yn,t−1, ûn,t(hn) = yn,t − ρ̂n(hn)yn,t−1, β̂n(hn)

and γ̂n(hn) are defined in (B.1), ρ̂n(hn) is defined in (B.2), and g(ρ, h)2 =
∑h

ℓ=1 ρ
2h.

Proof. We adapt the proof of Lemma A.2 in Montiel Olea and Plagborg-Møller (2021a)

presented in their Supplemental Appendix E.2. They claim that is sufficient to prove∑n−hn

t=1 ξ̂n,t(hn)
2ûn,t(hn)

2

(n− hn)g(ρn, hn)2σ4
n

−
∑n−hn

t=1 ξn,t(ρn, hn)
2u2n,t

(n− hn)g(ρn, hn)2σ4
n

p→ 0 , (C.19)

since they then can conclude using their Lemma A6, which implies∑n−hn

t=1 ξn,t(ρn, hn)
2u2n,t

(n− hn)g(ρn, hn)2σ4
n

p→ 1 .

We avoid using their Lemma A6 since its proof requires that the shocks have a finite 8th

moment. Instead, we observe that (C.16) presented in the proof of Lemma C.4 implies the

previous claim.
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To verify (C.19), Montiel Olea and Plagborg-Møller prove that is sufficient to show that

∑n−hn

t=1

[
ξ̂n,t(hn)

2ûn,t(hn)
2 − ξn,t(ρn, hn)

2u2n,t

]2
(n− hn)g(ρn, hn)2σ4

n

(C.20)

converges in probability to zero. To prove that, they derive the following upper bound for

(C.20):

3[(R̂1)
1/2 × (R̂2)

1/2] + 3[(R̂3)
1/2 × (R̂4)

1/2] + 3[(R̂1)
1/2 × (R̂3)

1/2] ,

where

R̂1 =

∑n−hn

t=1

[
ξn,t(ρn, hn)− ξ̂n,t(hn)

]4
(n− hn)g(ρn, hn)4σ8

n

, R̂2 =

∑n−hn

t=1 u4n,t
n− hn

R̂3 =

∑n−hn

t=1 [ûn,t(hn)− un,t]
4

n− hn
, R̂4 =

∑n−hn

t=1 ξn,t(ρn, hn)
4

(n− hn)g(ρn, hn)4σ8
n

.

In what follows, we use Assumptions B.1 to prove that (i) R̂1 and R̂3 are op (1) and

(ii) R̂2 and R̂4 are Op (1), which are sufficient to conclude that (C.20) converges to zero in

probability.

To verify R̂1 is op (1), let us first observe that

ξn,t(ρn, hn)− ξ̂n,t(hn) = [β̂n(hn)− β(ρn, hn)]un,t + [η̂n(ρn, hn)− η(ρn, hn)]yn,t−1 ,

where η̂(ρn, hn) = ρnβ̂n(hn) + γ̂n(hn) and η(ρn, hn) = ρnβ(ρn, hn). Then, using Loeve’s

inequality (see Theorem 9.28 in Davidson (1994)), we obtain

R̂1 ≤ 8

(
[β̂n(hn)− β(ρn, hn)]

g(ρn, hn)

)4(∑n−hn

t=1 u4n,t
(n− hn)σ8

n

)

+ 8

(
g(ρn, n− hn)[η̂n(ρn, hn)− η(ρn, hn)]

g(ρn, hn)

)4
( ∑n−hn

t=1 y4n,t−1

(n− hn)g(ρn, n− hn)4σ8
n

)
.

Note that the first term on the right-hand side in the previous expression goes to zero in

probability due to part (i) in Lemma C.6, Markov’s inequality, and Assumptions B.1. The

second term on the right-hand side in the previous expression goes to zero in probability due

to part (ii) in Lemma C.6, Markov’s inequality, and using that

E[y4n,t−1] = E[ξn,0(ρn, t− 1)4] ≤ g(ρn, n− hn)
44K4 , (C.21)
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where the inequality holds due to Lemma C.1 and g(ρn, t − 1)4 ≤ g(ρn, n − hn)
4 for all

i ≤ n− hn. This completes the proof of R̂1 is op (1).

To prove that R̂3 is op (1), note that we can write:

R̂1 = (g(ρn, hn)[ρ̂n(hn)− ρ])4
∑n−hn

t=1 y4t−1

(n− hn)g(ρn, hn)4

since ûn,t(hn) − un,t = (ρ̂n(hn) − ρ)yt−1 . Note that the right-hand side in the previous

expression goes to zero in probability due to part (iii) in Lemma C.6, Markov’s inequality,

and using (C.21). This completes the proof of R̂3 is op (1). Finally, Markov’s inequality

and Assumptions B.1 implies that R̂2 is Op (1). While Markov’s inequality and Lemma C.1

implies R̂4 is Op (1).

C.6 Proof of Proposition B.2

Proof. For any ϵ > 0, define the event En,ϵ = {|Rn(1)| ≤ c∗n(1, 1 − α) − ψ(ϵ)}, where

ψ(ϵ) = z1−α/2−3ϵ/2 − z1−α/2−2ϵ and zα is the α-quantile of the standard normal distribution.

We will prove that for any (small) ϵ > 0 the following claims hold,

lim
n→∞

Pn

(
[1/L, L] ⊆ C∗

la−ar(hn, 1− α) | En,ϵ

)
= 1 , (C.22)

lim inf
n→∞

Pn(En,ϵ) ≥ 1− α− 4ϵ . (C.23)

These two claims are sufficient to conclude that

lim inf
n→∞

Pn

(
[1/L, L] ⊆ C∗

la−ar(hn, 1− α)
)
≥ 1− α− 4ϵ .

Since this holds for any (small) ϵ >), it implies the claim of the proposition.

Claim 1: (C.22) holds. To verify this, we first rewrite the lower and upper bounds of

C∗
la−ar(h, 1− α) using the definition of Rn(1) as in (6):

(
β̂n(1)− ŝn(1)c

∗
n(1, 1− α)

)hn

= (1− c1/n− ζn,1)
hn (C.24)(

β̂n(1) + ŝn(1)c
∗
n(1, 1− α)

)hn

= (1− c1/n+ ζn,2)
hn (C.25)

where ζn,1 = ŝn(1){−Rn(1) + c∗n(1, 1− α)} and ζn,2 = ŝn(1){Rn(1) + c∗n(1, 1− α)} .
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Note that we have ζn,1 ≥ ŝn(1)ψ(ϵ) and ζn,2 ≥ ŝn(1)ψ(ϵ) conditional En,ϵ. Additionally,

we can obtain that

ŝn(1) = c
1/2
2 n−1/4(1 + op(1)) , (C.26)

which follows by the formula in (4), Lemma C.7 and part 2 of Lemma B.1(adapted for the

i.i.d. case that we consider in this proposition), and because hn/n
1/2 → c2 as n→ ∞.

Since hn/
√
n → c2 > 0 as n → ∞, it holds that limn→∞(1 − Cn−1/4)hn → 0 for any

positive constant C. This implies that conditional on En,ϵ, we have that the lower bound of

C∗
la−ar(h, 1− α) goes to zero. To see this, consider the following derivations using (C.24),

(1− c1/n− ζn,1)
hn

(1)

≤
(
1− c

1/2
2 n−1/4(1 + op(1))ψ(ϵ)

)hn

where (1) holds by definition of ζn,1 conditional on En, (C.26), and because ψ(ϵ) is positive

by definition. Since 1+ op(1) is larger than 1− δ for any small δ > 0 with a high probability

for any n sufficiently larger, we can conclude that the right-hand side of the previous display

goes to zero with a high probability conditional on En.

The previous derivation concludes that the lower bound of C∗
la−ar(h, 1− α) goes to zero

conditional on En, which implies that the lower bound is asymptotically lower than 1/L con-

ditional on En. Now we will show that the upper bound of C∗
la−ar(h, 1−α) is asymptotically

larger than L conditional on En. To see this, consider the following derivation using (C.25),

(1− c1/n+ ζn,2)
hn

(1)

≥
(
1− c1/n+ c

1/2
2 n−1/4(1 + op(1))ψ(ϵ)

)hn

(2)

≥ 1 + (−c1/n+ c
1/2
2 n−1/4(1 + op(1))ψ(ϵ))hn

= 1 +O(n−1/2) + c
1/2
2 n1/4(1 + op(1))(hn/

√
n)

where (1) holds by definition of ζn,2 conditional on En, (C.26), and because ψ(ϵ) is positive

by definition, and (2) holds by Bernoulli’s inequality. Since 1 + op(1) is larger than 1− δ for

any small δ > 0 with a high probability for any n sufficiently larger, we can conclude that the

right-hand side of the previous display goes to infinity with a high probability conditional

on En. In particular, the upper bound of C∗
la−ar(h, 1 − α) is asymptotically larger than L

conditional on En. This completes the proof of claim 1.

Claim 2: (C.23) holds. We first note that the following inclusion

{|Rn(1)| ≤ z1−α/2−2ϵ} ⊆ {|Rn(1)| ≤ c∗n(1, 1− α)− ψ(ϵ)} = En,ϵ
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holds with a high probability due to part 1 of Lemma B.3 (adapted for the i.i.d. case that

we consider in this proposition). We then observe that the probability of the left-hand side

of the previous expression goes to 1−α− 4ϵ due to Theorem B.1. This completes the proof

of claim 2.

D Proof of Auxiliary Results: Asymptotic Refinements

D.1 Proof of the Lemma B.4

Proof. By Lemma D.1, there exists a random variable R̃n(h) such that

Pρ

(∣∣∣Rn(h)− R̃n(h)
∣∣∣ > n−1−ϵ

)
≤ Cn−1−ϵ

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
,

where

R̃n(h) ≡ (n− h)1/2T

(
1

n− h

n−h∑
t=1

Xt;σ
2, ψ4

4, ρ

)
and the sequence {Xt : 1 ≤ t ≤ n− h} is defined in (B.4). Due to Lemma D.1, we know T
is a polynomial. Define J̃n(x, h, P, ρ) = Pρ

(
R̃n(h) ≤ x

)
. Using Bonferroni’s inequality, we

conclude

|Pρ (Rn(h) ≤ x)− Pρ

(
R̃n(h) ≤ x

)
| ≤ Dn + Pρ

(∣∣∣Rn(h)− R̃n(h)
∣∣∣ > n−1−ϵ

)
.

Therefore, supx∈R |Jn(x, h, P, ρ)−J̃n(x, h, P, ρ)| ≤ Dn+Cn
−1−ϵ

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
,

which completes the proof of the Lemma. Note that the constant C is defined in Lemma

D.1 and only depends on a, h, k, Cσ, and cu.

Lemma D.1. Suppose Assumption 5.1 holds. For any fixed h ∈ N and a ∈ (0, 1). Then,

for any ρ ∈ [−1+ a, 1− a] and ϵ ∈ (0, 1/2), there exist a constant C = C(a, h, k, Cσ, cu) > 0,

where k ≥ 8(1 + ϵ)/(1− 2ϵ), and a real-valued function T (· ;σ2, ψ4
4, ρ) : R

8 → R, such that

1. T (0;σ2, ψ4
4, ρ) = 0,

2. T (x;σ2, ψ4
4, ρ) is a polynomial of degree 3 in x ∈ R8 with coefficients depending con-

tinuously differentiable on σ2, ψ4
4, and ρ,

3. Pρ

(∣∣∣Rn(h)− R̃n(h)
∣∣∣ > n−1−ϵ

)
≤ Cn−1−ϵ

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
,
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where σ2 = EP [u
2
1], ψ

4
4 = EP [u

4
1],

R̃n(h) ≡ (n− h)1/2T

(
1

n− h

n−h∑
t=1

Xt;σ
2, ψ4

4, ρ

)

and the sequence {Xt : 1 ≤ t ≤ n − h} is defined in (B.4). Furthermore, the asymptotic

variance of R̃n(h) equals one.

Proof. The proof has two main parts. We first use Lemmas D.2 and D.3 to approximate

Rn(h) using functions based on ξt, ut, and yt−1. We then replace yt−1 by zt−1. We specifically

define the polynomial T .

Part 1: The derivations presented on page 1811 in Montiel Olea and Plagborg-Møller

(2021a) implies

Rn(h) =

∑n−h
t=1 ξt(h)ût(h)(∑n−h

t=1 ξ̂t(h)
2ût(h)2

)1/2 ,
where ξt(ρ, h) =

∑h
ℓ=1 ρ

h−ℓut+ℓ, ût(h) = yt− ρ̂n(h)yt−1, ξ̂t(h) = yt+h−
(
β̂n(h)yt + γ̂n(h)yt−1

)
,

and the coefficients (β̂n(h), γ̂n(h)) is as in (3) and ρ̂n(h) is defined in (5). Define

fn =

∑n−h
t=1 ξt(ρ, h)ût(h)

n− h
and gn =

∑n−h
t=1 ξ̂t(h)

2ût(h)
2

V (n− h)
− 1 ,

where V = E[ξt(ρ, h)
2u2t ] = σ4

∑h
ℓ=1 ρ

2(h−ℓ). It follows that

Rn(h) = (n− h)1/2V −1/2fn (1 + gn)
−1/2 .

Lemmas D.2, D.3, and D.4 imply

P ((n− h)1/2|V −1/2fn| > δ) ≤ Cδ−k
(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
and

P ((n− h)1/2|gn| > δ) ≤ Cδ−k
(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
.

Step 1: Define R̃g,n = (n− h)1/2fnV
−1/2

(
1− 1

2
gn +

3
8
g2n
)
. Due to Lemma D.4, we have

P
(
(n− h)3/2

∣∣∣Rn(h)− R̃g,n

∣∣∣ > δ4
)
≤ Cδ−k

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
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since P
(
n3/2

∣∣∣(1 + gn)
−1/2 −

(
1− 1

2
gn +

3
8
g2n
)∣∣∣ > δ3

)
≤ Cδ−k

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
.

Step 2: Define

R̃f,n = (n− h)1/2V −1/2 (f1,n + f2,n + f3,n)

(
1− 1

2
gn +

3

8
g2n

)
,

where fn =
∑4

j=1 fj,n as in Lemma D.2. We conclude

P
(
(n− h)3/2

∣∣∣R̃g,n − R̃f,n

∣∣∣ > δ4
)
= P

(
(n− h)4/2

∣∣∣∣V −1/2f4,n

(
1− 1

2
gn +

3

8
g2n

)∣∣∣∣ > δ4
)

≤ Cδ−k
(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
,

where the last inequality follows by Lemmas D.4 and D.2.

Step 3: Define

R̃fg,n = (n− h)1/2V −1/2

(
f1,n + f2,n + f3,n −

1

2
f1,ngn −

1

2
f2,ngn +

3

8
f1,ng

2
n

)
.

Lemmas D.2, D.3, and D.4 imply

P
(
(n− h)3/2

∣∣∣R̃f,n − R̃fg,n

∣∣∣ > δ4
)
≤ Cδ−k

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
.

Step 4: Define

R̃y,n(h) = (n− h)1/2V −1/2

(
3∑

j=1

fj,n −
1

2
f1,ng1,n −

1

2
f1,ng2,n −

1

2
f2,ng1,n +

3

8
f1,ng

2
1,n

)
,

where gn =
∑3

j=1 gj,n as in Lemma D.3. We use Lemmas D.2, D.3, and D.4 to conclude

P
(
(n− h)3/2

∣∣∣R̃fg,n − R̃y,n(h)
∣∣∣ > δ4

)
≤ Cδ−k

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
.

Step 5: By Bonferroni’s:

P
(
(n− h)3/2

∣∣∣Rn(h)− R̃y,n(h)
∣∣∣ > δ4

)
≤ Cδ−k

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
.
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Part 2: We consider V 1/2T (x;σ2, ψ4
4, ρ) is equal to the following polynomial

f1(x) + f2(x) + f3(x)−
1

2
(f1(x)g1(x) + f1(x)g2(x) + f2(x)g1(x)) +

3

8
f1(x)g1(x)

2 , (D.1)

where f1(x) = x1, f2(x) = −σ−2(1 − ρ2)x5x6, f3(x) = σ−4(1 − ρ2)x5x6(2ρx5 + x2), g1(x) =

V −1x3, and

g2(x) = V −1

(
ψ4
4

σ4
x21 −

2

σ2
x1x4 + (1− ρ2)

(
g(ρ, h)2x25 −

2

σ2
x5x7 + x26 −

2

σ2
x6x8

))
.

Note that R̃y,n(h) = V 1/2T
(
(n− h)−1

∑n−h
t=1 X̃t;σ

2, ψ4
4, ρ
)
, where

X̃t = (ξtut, u
2
t − σ2, (ξtut)

2 − V, ξtu
3
t , utyt−1, ξtyt−1, ξ

2
t utyt−1, ξtu

2
tyt−1) .

Since zt = yt + ρtz0, it follows that

P

(
(n− h)1/2

∣∣∣∣∣
∑n−h

t=1 ftyt−1

n− h
−
∑n−h

t=1 ftzt−1

n− h

∣∣∣∣∣ > δ

)
≤ Cδ−k

(
E[u2kt ] + E[u4kt ]

)
for ft = ut, ξt, ξ

2
t ut, ξtu

2
t . Then, Lemma D.4 and step 5 in part 1 implies

P
(
(n− h)3/2

∣∣∣Rn(h)− R̃n(h)
∣∣∣ > δ4

)
≤ Cδ−k

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
,

where R̃n(h) = V 1/2T
(
(n− h)−1

∑n−h
t=1 Xt;σ

2, ψ4
4, ρ
)
and the sequence {Xt : 1 ≤ t ≤ n−h}

is defined in (C.13). As we mentioned before, the constant C includes the constants C’s that

appear in Lemmas D.2, D.3, D.5 and D.6 that only depends on a, h, k, Cσ, and cu. Finally,

we take δ = n(1/2−ϵ)/4

Lemma D.2. Suppose Assumption 5.1 holds. For any fixed h, k ∈ N and a ∈ (0, 1). Define

fn =

∑n−h
t=1 ξt(ρ, h)ût(h)

n− h

where ξt(ρ, h) =
∑h

ℓ=1 ρ
h−ℓut+ℓ, ût(h) = yt − ρ̂n(h)yt−1, and ρ̂n(h) is as in (5). Then, for

any ρ ∈ [−1 + a, 1− a], there exists a constant C = C(h, k, a, Cσ) such that we can write

fn = f1,n + f2,n + f3,n + f4,n ,
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where

P
(
(n− h)j/2|fj,n| ≥ δj

)
≤ Cδ−k

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
for any δ < (n− h)1/2 and j ∈ {1, 2, 3, 4}.

Proof. In what follows we use ξt = ξt(ρ, h). Using the definition of ρ̂n(h), we obtain

fn =

∑n−h
t=1 ξtut
n− h

−

(∑n−h
t=1 utyt−1

n− h

)(∑n−h
t=1 ξtyt−1

n− h

)(∑n−h
t=1 y

2
t−1

n− h

)−1

.

Let us define the components of fn as follows:

f1,n =

(∑n−h
t=1 ξtut
n− h

)

f2,n = −(1− ρ2)

σ2

(∑n−h
t=1 utyt−1

n− h

)(∑n−h
t=1 ξtyt−1

n− h

)

f3,n =
(1− ρ2)

σ4

(∑n−h
t=1 utyt−1

n− h

)(∑n−h
t=1 ξtyt−1

n− h

)(
2ρ

∑n−h
t=1 utyt−1

n− h
+

∑n−h
t=1 u

2
t − σ2

n− h

)
f4,n = fn − (f1,n + f2,n + f3,n) .

Note that by construction fn =
∑4

j=1 fj,n. Lemma D.6 guarantees that each sample av-

erage in f1,n, f2,n, and f3,n verify the conditions to use Lemma D.4, which imply that

P
(
(n− h)j/2|fj,n| ≥ δj

)
≤ Cδ−kE[u2kt ] for j = 1, 2, 3, where the constant C includes Cσ

and a.

To prove P
(
(n− h)4/2|fj,n| ≥ δ4

)
≤ Cδ−k

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
, we proceed in two

steps.

Step 1: Define

Wn =

∑n−h
t=1 (1− ρ2)σ−2y2t−1

n− h
− 1 .

We can use (1) and algebra to derive the following identity

Wn = −
σ−2y2n−h

n− h
+ 2ρσ−2

∑n−h
t=1 utyt−1

n− h
+ σ−2

∑n−h
t=1 u

2
t − σ2

n− h
.
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This implies that

f3,n =
(1− ρ2)

σ2

(∑n−h
t=1 utyt−1

n− h

)(∑n−h
t=1 ξtyt−1

n− h

)(
Wn +

σ−2y2n−h

n− h

)
.

Therefore, f4,n = fn − f1,n − f2,n − f3,n is equal to

−(1− ρ2)

σ2

(∑n−h
t=1 utyt−1

n− h

)(∑n−h
t=1 ξtyt−1

n− h

)(
(1 +Wn)

−1 − (1−Wn) +
σ−2y2n−h

n− h

)
.

Step 2: Due to Lemma D.4, it is sufficient to show that

P
(
(n− h)2/2|(1 +Wn)

−1 − (1−Wn)| > δ2
)
≤ Cδ−kE[u2kt ] (D.2)

and

P

(
(n− h)2/2

∣∣∣∣σ−2y2n−h

n− h

∣∣∣∣ > δ2
)

≤ Cδ−kE[|ut|k] . (D.3)

Note that (D.2) follows by part 5 in Lemma D.4 since P (n1/2|Wn| > δ) ≤ Cδ−kE[u2kt ] due

to Lemma D.6 and δ < n1/2. Finally, (D.3) follows by Markov’s inequality and Lemma D.5.

As we mentioned before, the constant C includes the constants C’s that appear in Lemmas

D.5 and D.6 that only depends on a, h, k, and Cσ.

Lemma D.3. Suppose Assumption 5.1 holds. For any fixed h, k ∈ N and a ∈ (0, 1). Define

gn =

∑n−h
t=1 ξ̂t(h)

2ût(h)
2

V (n− h)
− 1

where V = σ2
∑h

ℓ=1 ρ
2(h−ℓ), ξ̂t(h) is as in (3) ût(h) = yt − ρ̂n(h)yt−1, and ρ̂n(h) is as in (5).

Then, for any ρ ∈ [−1 + a, 1− a], there exists a constant C = C(h, k, a, Cσ, cu) such that we

can write

gn = g1,n + g2,n + g3,n ,

where

P
(
(n− h)j/2|gj,n| ≥ δj

)
≤ Cδ−k

(
E[|ut|k] + E[u2kt ] + E[u4kt ]

)
for any δ < (n− h)1/2 and j ∈ {1, 2, 3}.

Proof. In what follows we use ξt = ξt(ρ, h) =
∑h

ℓ=1 ρ
h−ℓut+ℓ. As we did for the case of fn

in Lemma D.2, we utilize the linear regression formulas to define the components of gn as
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functions of the sample average of functions of ξt, ut, and yt−1:

V g1,n =

∑n−h
t=1 (ξ

2
t u

2
t − V )

n− h

V g2,n =
ψ4
4

σ4

(∑n−h
t=1 ξtut
n− h

)2

− 2

σ2

(∑n−h
t=1 ξtut
n− h

)(∑n−h
t=1 ξtu

3
t

n− h

)

+ (1− ρ2)g(ρ, h)2

(∑n−h
t=1 utyt−1

n− h

)2

− 2(1− ρ2)

σ2

(∑n−h
t=1 utyt−1

n− h

)(∑n−h
t=1 ξ

2
t utyt−1

n− h

)

+ (1− ρ2)

(∑n−h
t=1 ξtyt−1

n− h

)2

− 2(1− ρ2)

σ2

(∑n−h
t=1 ξtyt−1

n− h

)(∑n−h
t=1 ξtu

2
tyt−1

n− h

)
V g3,n = V gn − V (g1,n + g2,n) ,

where ψ4
4 = E[u4t ] and g(ρ, h)

2 =
∑h

ℓ=1 ρ
2(h−ℓ). By construction gn =

∑3
j=1 gj,n. Lemma D.6

guarantees that each sample average in g1,n and g2,n verify the conditions to use Lemma D.4,

which imply

P
(
(n− h)j/2|gj,n| ≥ δj

)
≤ Cδ−k

(
E[u2kt ] + E[u4kt ]

)
for δ < (n − h)1/2 and j ∈ {1, 2}, where the constant C includes Cσ, a, and cu (since

ψ4
4 ≤ 24ec

2
u). In what follows we prove P

(
(n− h)3/2|g3,n| ≥ δ3

)
≤ Cδ−k

(
E[u2kt ] + E[u4kt ]

)
.

First, we write V g3,n = Rg,1 + Rg,2, where Rg,1 and Rg,2 are specified below. We will

prove that P ((n − h)3/2|V −1Rg,j| > δ3) ≤ Cδ−kE[u4kt ] for j = 1, 2. To compute g3,n we use

equation (3) and the following equality

ξ̂t(h) = ξt − (β̂n(h)− β(ρ, h))ut − η̂n(ρ, h)yt−1 ,

where η̂n(ρ, h) = ρβ̂n(h) + γ̂n(h). We also use that ût(h) = yt − ρ̂n(h)yt−1 = ut − (ρ̂n(h) −
ρ)yt−1. In what follows, we denote β̂ = β̂n(h), ρ̂ = ρ̂n(h) and η̂ = η̂n(ρ, h), and

∑
=
∑n−h

t=1

to simplify the heavy notation. We obtain Rg,1 is equal to

2

[
(η − η̂) +

(1− ρ2)

σ2

(∑
ξtyt−1

n− h

)](∑
ξtu

2
tyt−1

n− h

)
+

σ4

1− ρ2

{
(η − η̂)2 − (1− ρ2)2

σ4

(∑
ξtyt−1

n− h

)2
}

+ 2

[
(ρ− ρ̂) +

(1− ρ2)

σ2

(∑
utyt−1

n− h

)](∑
ξ2t utyt−1

n− h

)
+ ψ4

4

{
(β − β̂)2 − 1

σ4

(∑
ξtut
n

)2
}

+ 2

[
(β − β̂) +

1

σ2

(∑
ξtut

n− h

)](∑
ξtu

3
t

n− h

)
+

σ4g22
1− ρ2

{
(ρ− ρ̂)2 − (1− ρ2)2

σ4

(∑
utyt−1

n− h

)2
}

,
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and we obtain that Rg,2 is equal to

(β − β̂)2
(∑

u4t
n− h

− ψ4
4

)
+ (ρ− ρ̂)2

(∑
ξ2t y

2
t−1

n− h
− σ4g(ρ, h)2

1− ρ2

)
+ (η − η̂)2

(∑
u2ty

2
t−1

n− h
− σ4

1− ρ2

)
2(β − β̂)2(ρ− ρ̂)

(∑
u3tyt−1

n− h

)
+ 2(η − η̂)2(ρ− ρ̂)

(∑
uty

3
t−1

n− h

)
+ 2(β − β̂)(ρ− ρ̂)2

(∑
ξtuty

2
t−1

n− h

)
+ 4(β − β̂)(ρ− ρ̂)

(∑
ξtu

2
tyt−1

n− h

)
+ 2(η − η̂)(ρ− ρ̂)2

(∑
ξty

3
t−1

n− h

)
+ 4(η − η̂)(ρ− ρ̂)

(∑
ξtuty

2
t−1

n− h

)
+ 2(β − β̂)(η − η̂)

(∑
u3tyt−1

n− h

)
+ 2(β − β̂)(η − η̂)(ρ− ρ̂)2

(∑
uty

3
t−1

n− h

)
+ (β − β̂)2(ρ− ρ̂)2

(∑
u2ty

2
t−1

n− h
− σ4

1− ρ2

)
+ 4(β − β̂)(η − η̂)(ρ− ρ̂)

(∑
u2ty

2
t−1

n− h
− σ4

1− ρ2

)
+ (η − η̂)2(ρ− ρ̂)2

(∑
y4t−1

n− h
− E[u4t ]

1− ρ4
− 6

ρ2σ4

(1− ρ2)(1− ρ4)

)
+ (η − η̂)2(ρ− ρ̂)2

E[u4t ]

1− ρ4

+
σ4

1− ρ2
(β − β̂)2(ρ− ρ̂)2 + 4(β − β̂)(η − η̂)(ρ− ρ̂)

σ4

1− ρ2
+ (η − η̂)2(ρ− ρ̂)2

6ρ2σ4

(1− ρ2)(1− ρ4)
.

Note that P ((n − h)3/2|V −1Rg,1| > δ3) ≤ Cδ−k
(
E[u2kt ] + E[u4kt ]

)
follows by Lemmas D.4,

D.6, and D.7, since each term between parenthesis in the definition of Rg,2 appears in Lemma

D.6, the terms in brackets appears in items 1-4 of Lemma D.7, and the terms between curly

brackets can be written as the product of terms like parenthesis and brackets terms. Similarly,

P ((n−h)3/2|V −1Rg,2| > δ3) ≤ Cδ−k
(
E[u2kt ] + E[u4kt ]

)
follows by Lemmas D.4, D.6, and D.7,

since each term between parenthesis in the definition of Rg,1 appears in Lemma D.6 or in

items 5-8 of Lemma D.7.

Lemma D.4. Let {Wn,j : 1 ≤ j ≤ r} be a sequence of random variables. Suppose that there

exist constants cj and C such that

P (n1/2|Wn,j| > cjδ) ≤ Cδ−k ,

for j = 1, .., r and some k ∈ N. Then, for any r ≥ 2 and δ < n1/2, we have

1. P (n1/2|
∑r

j=1Wn,j| > (
∑r

j=1 cj)δ) ≤ rCδ−k .

2. P (nr/2|
∏r

j=1Wn,j| > (
∏r

j=1 cj)δ
r) ≤ rCδ−k .

3. P (n1/2|Wn,1 +
∏r

j=2Wn,j| > (c1 +
∏r

j=2 cj)δ) ≤ 2Cδ−k .

4. If c1n
−1/2δ < 1. Then, P (|Wn,1| > 1− b) ≤ Cδ−k for any b ∈ (0, 1− c1n

−1/2δ).
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5. If c1n
−1/2δ < 1. Then, for any b ∈ (0, 1− c1n

−1/2δ), we have

P

(
n3/2|(1 +Wn,1)

−1/2 − (1− 1

2
Wn,1 +

3

8
W 2

n,1)| >
5

16
b−7/2c31δ

3

)
≤ 4Cδ−k

and

P

(
n2/2|(1 +Wn,1)

−1 − (1−Wn,1)| >
2

1 + (1− b)3
δ2
)

≤ 3Cδ−k .

Proof. Bonferroni’s inequality and {|Wn,1| > 1−b} ⊆ {n1/2|Wn,1| > c1δ} for b ≤ 1−c1n−1/2δ

imply the proof of items 1–4. To prove the first part of item 5, we use Bonferroni’s inequality

to conclude that the left-hand side in item 5 is lower than or equal to the sum of P (|Wn,1| >
1− b) and

P

(
n3/2|(1 +Wn,1)

−1/2 − (1− 1

2
Wn,1 +

3

8
W 2

n,1)| >
5

16
b−7/2c31δ

3, |Wn,1| ≤ 1− b

)
.

Item 4 implies that the former term is bounded by Cδ−k, while the latter term is lower than

or equal to

P

(
n3/2 5

16
b−7/2|Wn,1|3 >

5

16
b−7/2c31δ

3, |Wn,1| ≤ 1− b

)
,

where the left-hand side term inside the previous probability used the Taylor Polynomial

error and |Wn,1| ≤ 1− b. By item 2, the above probability is lower than or equal to 3Cδ−k.

Finally, adding the upper and lower bounds concludes the first part of item 5. The second

part is analogous.

Lemma D.5. Suppose Assumption 5.1 holds. For fixed a ∈ (0, 1) and k ≥ 1. Then, for any

|ρ| ≤ 1− a, there exists a constant C = C(a, k) > 0 such that

E[|yn|k] ≤ C E[|un|k] , ∀n ≥ 1 .

and P (n−1/2|ysn| > δ) ≤ C δ−kE[|un|sk] , ∀n ≥ 1 ,

Proof. The proof goes by induction. For k = 1, we have |yn| ≤ |ρ||yn−1|+ |un|, which implies

that

E[|yn|] ≤ E[|un|]
(
1 + |ρ|+ ...+ |ρ|n−1

)
≤ E[|un|] a−1 .

Therefore, the constant C = a−1. We can also derive y2n = ρ2y2n−1+2ρyn−1un+u
2
n, which im-

plies E[y2n] ≤ ρ2E[y2n−1]+2|ρ|E[|yn−1un|]+E[u2n]. Using that E[|yn−1un|] = E[|yn−1|]E[|un|] ≤
a−1E[u2n], we conclude E[y2n] ≤ ρ2E[y2n−1] + (2|ρ|a−1 + 1)E[u2n], which implies E[y2n] ≤
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(2|ρ|a−1 + 1)E[u2n]
(
1 + ρ2 + ...+ ρ2(n−1)

)
≤ C1(a)E[u

2
n], where C1(a) = (2(1 − a)/a + 1)/a.

In this case, the constant C = C1(a).

Let us use C1(a) to construct C2(a) and so on. Suppose we have already computed Ck(a).

Now, let us compute Ck+1(a). We have

y2k+1
n = ρ2k+1y2k+1

n−1 +
2k∑
ℓ=1

C2k+1
ℓ ρ2k+1−ℓy2k+1−ℓ

n−1 uℓn + u2k+1
n .

By triangular inequality and similar arguments as before, we obtain

E[y2k+1
n ] ≤ |ρ|2k+1E[|yn−1|2k+1] +

2k∑
ℓ=1

C2k+1
ℓ |ρ|2k+1−ℓE[|yn−1|2k+1−ℓ]E[|uℓn|] + E[|un|2k+1] ,

and by the inductive hypothesis, we know E[|yn−1|2k+1−ℓ]E[|uℓn|] ≤ Ck−ℓ/2E[|un|2k+1], where

we used that E[|X|a]E[|X|b] ≤ E[|X|a+b]. Thus, the inductive hypothesis implies that

E[y2k+1
n ] ≤ |ρ|2k+1E[|yn−1|2k+1] + E[|un|2k+1]

(
2k∑
ℓ=1

C2k+1
ℓ |ρ|2k+1−ℓCk−ℓ/2 + 1

)
,

in a similar way as in the initial case, we conclude. Note that the final constant C only

involves a and k. The other case is analogous.

Lemma D.6. Suppose Assumption 5.1 holds. For a given h, k ∈ N and a ∈ (0, 1). Then,

for any |ρ| ≤ 1− a and h ∈ N, there exist a constant C = C(a, k, r, s, h, Cσ) > 0 such that

1. P ( (n− h)1/2|(n− h)−1
∑n−h

t=1 u
r
ty

s
t−1 −mr,s| > δ) ≤ Cδ−kE

[
|ut|(r+s)k

]
2. P ( (n− h)1/2|(n− h)−1

∑n−h
t=1 ξtu

r
ty

s
t−1| > δ) ≤ Cδ−kE

[
|ut|(1+r+s)k

]
3. P ( (n− h)1/2|(n− h)−1

∑n−h
t=1 ξ

2
t u

2
t − V | > 3δ) ≤ Cδ−kE[u4kt ]

4. P ( (n− h)1/2|(n− h)−1
∑n−h

t=1 ξ
2
t utyt−1| > 3δ) ≤ Cδ−kE[u4kt ]

5. P ( (n− h)1/2|(n− h)−1
∑n−h

t=1 ξ
2
t y

2
t−1 − σ4g(ρ, h)2(1− ρ2)−1| > 5δ) ≤ Cδ−kE[u4kt ]

for any δ > 0 and n > h, where ξt = ξt(ρ, h) =
∑h

ℓ=1 ρ
h−ℓut+ℓ, g(ρ, h) =

(∑h
ℓ=1 ρ

2(h−ℓ)
)1/2

,

and mr,s = E
[
urt

(∑
j≥1 ρ

j−1ut−j

)s]
.
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Proof. Define the filtration Fj = σ(ut : t ≤ j). In what follows, we use Markov’s inequality,

Lemmas D.4, D.8, and D.5. The constant C will replace other constants and will only depend

on a, k, r, s, h, Cσ, and the constants that appear in Lemmas D.8 and D.5.

Item 1: We prove this item by induction on s. First, consider s = 0 and r ≥ 0. Note

that {(urt − E[urt ],Ft) : 1 ≤ t ≤ n − h} define a martingale difference sequence. Therefore,

Markov’s inequality and Lemma D.8 imply P ( (n− h)1/2|(n− h)−1
∑n−h

t=1 u
r
t −mr,0| > δ) ≤

Cδ−kE
[
|ut|rk

]
, since mr,0 = E[urt ]. Let us suppose that item 1 holds for any (r, s) such

that r ≥ 0 and s ≤ s0 (this is a strong inductive hypothesis). Next, let us prove item 1 for

(r, s0 + 1). We write

(n− h)−1

n−h∑
t=1

urty
s0+1
t−1 −mr,s0+1 = I1 + I2 ,

where I1 = (n−h)−1
∑n−h

t=1 (urt −mr,0) y
s0+1
t−1 and I2 = (n−h)−1

∑n−h
t=1 mr,0

(
ys0+1
t−1 −m0,s0+1

)
.

Note that {((urt −mr,0) y
s0+1
t−1 ,Ft) : 1 ≤ t ≤ n − h} define a martingale difference sequence;

therefore, we conclude that P ((n − h)1/2|I1| > δ) ≤ Cδ−kE[|ut|k(r+s0+1)] using Markov’s

inequality and Lemmas D.8 and D.5. Now, let us write

ys0+1
t = (ρyt−1 + ut)

s0+1 = ρs0+1ys0+1
t−1 +

s0+1∑
j=1

(
s0 + 1

j

)
ρs0+1−jujty

s0+1−j
t−1 ,

which implies the following identity

(1− ρs0+1)(n− h)−1

n−h∑
t=1

ys0+1
t−1 =

−ys0+1
t

n− h
+

s0+1∑
j=1

(
s0 + 1

j

)
ρs0+1−j

(
(n− h)−1

n−h∑
t=1

ujty
s0+1−j
t−1

)
.

In a similar way, using zt =
∑

j≥1 ρ
j−1ut−j instead of yt, we can derive the following identity

(1− ρs0+1)m0,s0+1 =

s0+1∑
j=1

(
s0 + 1

j

)
ρs0+1−jmj,s0+1−j .

Using that |mr,0|k = |E[urt ]|k ≤ E[|ut|rk], the previous two identities, the inductive hypothesis
to (n− h)−1

∑n−h
t=1 u

j
ty

s0+1−j
t−1 −mj,s0+1−j for j = 1, . . . , s0 + 1, and Lemmas D.5 and D.4, we

conclude that P ((n − h)1/2|I2| > δ) ≤ Cδ−kE[|ut|k(r+s0+1)], which completes the proof due

to Lemma D.4.
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Item 2: Consider the following derivation for a sequence of random variable ft ∈ Ft:

n−h∑
t=1

ξtft =
n−h∑
t=1

h∑
ℓ=1

ρh−ℓut+ℓ ft =
n−h∑
t=1

t+h∑
j=t+1

ρt+h−juj ft =
n∑

j=1

ujbn,j ,

where bn,j =
∑j−1

t=j−h ρ
t+h−j ft I{1 ≤ t ≤ n − h}. Note that {ujbn,j ∈ Fj : 1 ≤ j ≤ n − h}

defines a martingale difference sequence and

E[|ujbn,j|k] ≤ hk−1

j−1∑
t=j−h

|ρ|(t+h−j)k E[|uj|k]E[|ft|k]I{1 ≤ t ≤ n− h}

≤ Ck,h,aE[|ut|k] max
1≤t≤n−h

E[|ft|k] ,

where Ck,h,a = hk−1
∑h

ℓ=1(1 − a)(h−ℓ)k. Now we take ft = urty
s
t−1 and use E[|urtyst−1|k] ≤

CE[|ut|rk]E[|ut|sk] due to Lemma D.5. Finally, Jensen’s inequality implies E[|ut|k]E[|ft|k] ≤
E[|ut|(1+s+r)k]. We conclude due to Lemma D.8.

Item 3–4: We can write (n− h)−1
∑n−h

t=1 ξ
2
t u

2
t − V and (n− h)−1

∑n−h
t=1 ξ

2
t utyt−1 as the sum

three martingale difference sequences. For item 3, we use the same decomposition used to

prove (C.16) in the proof of Lemma C.4. For item 4, a similar decomposition is possible.

For both items, we can conclude as in the proof of item 2 by using Bonferroni’s inequality

and Lemma D.8; therefore, the details are omitted.

Item 5: Let us write
∑n−h

t=1 ξ
2
t y

2
t−1 − σ4g(ρ, h)2(1− ρ2)−1 as the sum of three terms:

n∑
j=1

(u2j − σ2)bn,j +
n∑

j=1

ujdn,j + g(ρ, h)2σ4(1− ρ2)−1

n−h∑
j=1

(σ−2(1− ρ2)y2t−1 − 1) ,

where bn,j =
∑j−1

t=j−h ρ
2(h+t−j)y2t−1I{1 ≤ t ≤ n− h} and

dn,j =

j−1∑
t=j−h

j−t−1∑
ℓ2=1

ut+ℓ2ρ
2h−j+t−ℓ2y2t−1I{1 ≤ t ≤ n− h} .

Note that (u2j −σ2)bn,j and ujdn,j define two martingale difference sequences with respect

to Fj−1. By Lemma D.8 and similar derivations as in the proof of item 2, we obtain

I1 = P ( |(n− h)−1/2

n∑
j=1

(u2j − σ2)bn,j| > δ) ≤ δ−kCE[u4kt ]

31



and

I2 = P ( |(n− h)−1/2

n∑
j=1

ujdn,j| > δ) ≤ δ−kCE[u4kt ] ,

for some constant C that depends on h, k, and a.

By item 1 (r = 0 and s = 2) and m0,2 = σ2(1− ρ2)−1, it follows that

I3 = P ( |(n− h)−1/2 g(ρ, h)
2σ4

1− ρ2

n−h∑
j=1

(σ−2(1− ρ2)y2t−1 − 1)| > δ) ≤ δ−kCE[u4kt ] ,

for some constant C that depends on h, k, a, and Cσ.

Finally, Bonferroni’s inequality and the previous inequalities imply

P ( (n− h)1/2|(n− h)−1

n−h∑
t=1

ξ2t y
2
t−1 − σ4g(ρ, h)2(1− ρ2)−1| > 5δ) ≤ δ−kCE[u4kt ] ,

where the constant C absorbs all the previous constants.

Lemma D.7. Suppose Assumption 5.1 holds. For fixed h, k ∈ N and a ∈ (0, 1). Then, for

any |ρ| ≤ 1− a, there exist a constant C = C(a, k, h, Cσ) > 0 such that

1. P
(
(n− h)2/2

∣∣∣ρ̂n(h)− ρ− (1− ρ2)σ−2
∑n−h

t=1 utyt−1

n−h

∣∣∣ > δ2
)
≤ Cδ−kE[u2kt ]

2. P
(
(n− h)2/2

∣∣∣β̂n(h)− β(ρ, h)− σ−2
∑n−h

t=1 ξt(ρ,h)ut

n−h

∣∣∣ > δ2
)
≤ Cδ−kE[u2kt ]

3. P
(
(n− h)2/2

∣∣∣γ̂n(h)− (1−ρ2)
∑n−h

t=1 ξt(ρ,h)yt−1

σ2(n−h)
+

ρ
∑n−h

t=1 ξt(ρ,h)ut

σ2(n−h)

∣∣∣ > δ2
)
≤ Cδ−kE[u2kt ]

4. P
(
(n− h)2/2

∣∣∣η̂n(ρ, h)− η(ρ, h)− (1−ρ2)
∑n−h

t=1 ξtyt−1

σ2(n−h)

∣∣∣ > δ2
)
≤ Cδ−kE[u2kt ]

5. P (n1/2|ρ̂n − ρ| > δ) ≤ Cδ−kE[u2kt ]

6. P (n1/2|β̂n(h)− β(ρ, h)| > δ) ≤ Cδ−kE[u2kt ]

7. P (n1/2|γ̂n(h)| > δ) ≤ Cδ−kE[u2kt ]

8. P (n1/2|η̂n − η| > δ) ≤ Cδ−kE[u2kt ]

for any δ < n1/2, where ρ̂n(h) is as in (5), (β̂n(h), γ̂n(h)) is as in (3), and ξt(ρ, h) =∑h
ℓ=1 ρ

h−ℓut+ℓ. η̂n(ρ, h) = ρβ̂n(h) + γ̂n(h), η(ρ, h) = ρβ(ρ, h).
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Proof. To prove item 1, we first use the definition of ρ̂n(h),

ρ̂n(h)− ρ =
(n− h)−1

∑n−h
t=1 utyt−1

(n− h)−1
∑n−h

t=1 y
2
t−1

=
(1− ρ2)

∑
utyt−1

σ2(n− h)
(1 +Wn)

−1 ,

where Wn = (1− ρ2)σ−2(n− h)−1
∑n−h

t=1 y
2
t−1 − 1. Using this notation, we have

ρ̂n(h)− ρ− (1− ρ2)
∑
utyt−1

σ2(n− h)
=

(1− ρ2)
∑
utyt−1

σ2(n− h)

(
(1 +Wn)

−1 − 1
)
.

Since P (n1/2|(n− h)−1
∑n−h

t=1 utyt−1| > δ) ≤ Cδ−kE[u2kt ] holds by Lemma D.6, it is sufficient

to show that P (n1/2|(1 +Wn)
−1 − 1| > δ) ≤ Cδ−kE[u2kt ] due to Lemma D.4. To prove the

last inequality we use P (n1/2|Wn| > δ) ≤ Cδ−kE[u2kt ] (which holds by Lemma D.6) and part

5 in Lemma D.4.

The proof of items 2–3 follows from the same arguments as before; therefore, the details

are omitted. Finally, the proof of item 4 follows by the results of items 2 and 3, the definition

of η̂n(ρ, h) and η(ρ, h), and Bonferroni’s inequality. Items 5-8 are implied by items 1-4,

Bonferroni’s inequality, and Lemma D.6.

Lemma D.8. Let {Zt : 1 ≤ t ≤ n} be a martingale difference sequence. Then, for any

k ≥ 2, we have

E

∣∣∣∣∣n−1/2

n∑
t=1

Zt

∣∣∣∣∣
k
 ≤ dkβn,k ,

where βn,k = n−1
∑n

t=1E[|Zt|k] and dk = (8(k − 1)max{1, 2k−3})k.

Proof. See Dharmadhikari et al. (1968), where this lemma is the main theorem.

D.2 Proof of the Lemma B.5

Proof. For item 1, for any fixed ϵ > 0, there exist N0 = N0(ϵ) such that the next inclusion

{|ρ̂n| > 1− a/2} ⊆ {n1/2|ρ̂n − ρ| > n1/2−ϵ} ∪ {|ρ| > 1− a} ,

holds for any n ≥ N0. Since |ρ| ≤ 1− a, we conclude

P (|ρ̂n| > 1− a/2) ≤ P
(
n1/2|ρ̂n − ρ| > n1/2−ϵ

)
≤ C1n

−1−ϵE[u2k1t ] ,
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for k1 ≥ 2(1 + ϵ)/(1 − 2ϵ), where the last inequality follows from Lemma D.7 in Appendix

D.1 by taking δ = n1/2−ϵ. This proves item 1 since C1E[u
2k1
t ] ≤ C = C(cu, k1, C1).

For item 2, we use the definition of ũt in (13), ût = yt − ρ̂nyt−1, where ρ̂n is as in (12),

and the model (1) to obtain

n−1

n∑
t=1

ũrt = n−1

n∑
t=1

(
ût − ¯̂u

)r
= n−1

n∑
t=1

(
ut + (ρ− ρ̂n)yt−1 − ¯̂u

)r
,

where ¯̂u = n−1
∑n

t=1 ut + (ρ − ρ̂n)n
−1
∑n

t=1 yt−1. Using the multinomial formula and the

previous expression, we have that n−1
∑n

t=1 ũ
r
t is equal to

n−1

n∑
t=1

∑
r1+r2+r3=r

(
r

r1, r2, r3

)
ur1t ((ρ− ρ̂n)yt−1)

r2 (−¯̂u)r3 = I1 + I2 + E[urt ] ,

where

I1 =
∑

r1+r2+r3=r

(
r

r1, r2, r3

)
(ρ− ρ̂n)

r2(−¯̂u)r3

{
n−1

n∑
t=1

ur1t y
r2
t−1 −mr1,r2

}

I2 =
∑

r1+r2+r3=r

(
r

r1, r2, r3

)
(ρ− ρ̂n)

r2(−¯̂u)r3mr1,r2 − E[urt ]I{r1 = r}

mr1,r2 = E

[
ur1t

(∑
j≥1

ρt−1−juj

)r2]
.

Note that Lemmas D.4, D.6, and D.7 in Appendix D.1 imply that P (|ρ − ρ̂n| > n−ϵ) ≤
Cn−1−ϵ, P (|¯̂u| > n−ϵ) ≤ Cn−1−ϵ, and P (|n−1

∑n
t=1 u

r1
t y

r2
t−1 − mr1,r2| > n−ϵ) ≤ Cn−1−ϵ for

some constant C. Therefore, Lemma D.4 implies P (|Ij| > n−ϵ) ≤ Cn−1−ϵ for j = 1, 2. This

implies that, for a fixed r, we have P (|n−1
∑n

t=1 ũ
r
t − E[urt ]| > n−ϵ) ≤ Cn−1−ϵ.

For item 3, we note that item 2 implies P (|n−1
∑n

t=1 ũ
2
t − E[u2t ]| > E[u2t ]/2) ≤ Cn−1−ϵ .

Therefore, we conclude item 3 by taking C̃σ = E[u2t ]/2. For item 4, we note that item 2

implies P (|n−1
∑n

t=1 ũ
4k
t − E[u4kt ]| > 1) ≤ Cn−1−ϵ . Then, we conclude item 4 by taking

M = E[u4kt ] + 1.

D.3 Proof of Theorem B.2

Proof. The proof of this theorem has two steps.
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Step 1: The sample average (n − h)−1/2
∑n−h

t=1 Xt has a valid Edgeworth expansion up to

an error o
(
n−3/2

)
due to the results in Götze and Hipp (1983). Assumption B.2 and the

definition of Xt in (B.4) guarantees that we can use Theorem 1.2 in Götze and Hipp (1994),

and this in turn implies that we can use the results in Götze and Hipp (1983) (Theorem 2.8

and Remark 2.12). We obtain an approximation error of o
(
n−3/2

)
since E[|Xt|6] < +∞,

which holds due to Assumption B.2.(iii).

Step 2: The proof of Theorem 2 in Bhattacharya and Ghosh (1978) and the Edgeworth

expansion for the sample average (n−h)−1/2
∑n−h

t=1 Xt guarantee the existence of Edgeworth

expansion for the distribution J̃n defined in (B.6). Furthermore, the function qj(x, h, P, ρ)

for j = 1, 2, 3 is a polynomial in x with coefficients that are polynomials of the moments of

Xt (up to order j+2) since the sequence Xt is strictly stationary (|ρ| < 1). In particular, the

coefficients of the polynomial qj(x, h, P, ρ) for j = 1, 2 are polynomials of moments of P (up

to order 12) and ρ since the moments of Xt can be computed using the moments of ut and

ρ. Moreover, qj(x, h, P, ρ) = (−1)jqj(−x, h, P, ρ) since the sequence Xt is strictly stationary.

D.4 Proof of Theorem B.3

Proof. The proof has two steps.

Step 1: Define the events En,1 = {|ρ̂n| ≤ 1− a/2}, En,2 = {n−1
∑n

t=1 ũ
2
t ≥ C̃σ}, and En,3 =

{n−1
∑n

t=1 ũ
4k
t < M}, where C̃σ andM are as in Lemma B.5. Define En = En,1∩En,2∩En,3.

By Lemma B.5 and Assumption 5.1 it follows that P (Ec
n) ≤ C2n

−1−ϵ for some constant

C2 that depends on the moments of ut. Since k > 8, it follows that, conditional on En,

the empirical distribution P̂n verifies part (i) and (iii) of Assumption B.2. It is important

to mention that Götze and Hipp (1994) use part (ii) of Assumption B.2 to guarantee the

dependent-data version of the Cramer condition that appears in Götze and Hipp (1983); see

Lemma 2.3 in Götze and Hipp (1994).

Step 2: Condition (iii) in Lemma 2.3 in Götze and Hipp (1994) holds for the bootstrap

sequence X∗
b,t since it holds for the original sequence Xt, otherwise the function F in (B.3)

verifies equation (8) in Götze and Hipp (1994). Therefore, the dependent-data version of

the Cramer condition holds for the bootstrap sequence X∗
b,t. The results in Götze and Hipp

(1994) implied that Edgeworth expansion exists for the sample average. Then, conditional

on the event En we can repeat the arguments presented in the proof of Theorem B.2.
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E Additional Tables

This appendix presents the additional results of the simulations.

ρ h RB RBper−t RBhc3 WB WBper−t GBLR AA AAhc2 AAhc3

Design 1: Gaussian i.i.d. shocks
0.95 1 0.35 0.35 0.35 0.35 0.35 0.13 0.33 0.34 0.35

6 0.83 0.81 0.83 0.86 0.84 0.54 0.71 0.73 0.74
12 1.07 1.03 1.07 1.12 1.09 0.81 0.89 0.91 0.93
18 1.15 1.11 1.15 1.21 1.17 0.97 0.98 1.00 1.03

1.00 1 0.35 0.35 0.35 0.35 0.35 0.07 0.33 0.34 0.35
6 0.97 0.93 0.97 1.00 0.96 0.42 0.80 0.82 0.84
12 1.51 1.41 1.51 1.57 1.48 0.77 1.12 1.15 1.17
18 2.01 1.83 2.01 2.09 1.92 1.07 1.36 1.39 1.42

Design 2: Gaussian GARCH shocks
0.95 1 0.44 0.43 0.44 0.46 0.45 0.13 0.41 0.43 0.44

6 0.93 0.91 0.94 1.00 0.98 0.54 0.80 0.82 0.84
12 1.10 1.06 1.11 1.19 1.15 0.79 0.91 0.94 0.97
18 1.13 1.09 1.13 1.22 1.18 0.94 0.95 0.98 1.01

1.00 1 0.44 0.43 0.44 0.45 0.45 0.07 0.41 0.42 0.44
6 1.10 1.06 1.11 1.17 1.13 0.42 0.91 0.93 0.96
12 1.60 1.50 1.61 1.73 1.63 0.77 1.18 1.22 1.25
18 2.04 1.86 2.05 2.21 2.04 1.06 1.37 1.41 1.45

Design 3: t-student i.i.d. shocks
0.95 1 0.33 0.33 0.34 0.33 0.33 0.13 0.31 0.32 0.33

6 0.81 0.79 0.82 0.84 0.82 0.54 0.68 0.71 0.73
12 1.05 1.02 1.06 1.10 1.07 0.80 0.86 0.89 0.93
18 1.14 1.10 1.15 1.19 1.16 0.97 0.94 0.98 1.02

1.00 1 0.33 0.33 0.34 0.34 0.33 0.07 0.31 0.32 0.33
6 0.94 0.91 0.95 0.97 0.94 0.42 0.77 0.79 0.82
12 1.49 1.39 1.50 1.54 1.45 0.77 1.07 1.11 1.16
18 1.96 1.79 1.98 2.03 1.87 1.08 1.30 1.35 1.41

Design 4: mix-gaussian GARCH shocks
0.95 1 0.46 0.45 0.46 0.46 0.45 0.13 0.42 0.43 0.44

6 0.89 0.87 0.90 0.96 0.94 0.55 0.77 0.79 0.82
12 1.01 0.98 1.02 1.11 1.07 0.78 0.86 0.88 0.91
18 1.02 1.00 1.03 1.12 1.08 0.88 0.89 0.91 0.94

1.00 1 0.46 0.45 0.46 0.46 0.46 0.08 0.42 0.43 0.44
6 1.06 1.01 1.07 1.12 1.09 0.45 0.87 0.90 0.92
12 1.50 1.40 1.51 1.62 1.53 0.79 1.11 1.14 1.18
18 1.88 1.71 1.89 2.06 1.90 1.08 1.28 1.31 1.35

Table E.1: Median length of confidence intervals for β(ρ, h) with a nominal level of 90% and
n = 95. 5,000 simulations and 1,000 bootstrap iterations.
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ρ h RB RBper−t RBhc3 WB WBper−t GBLR AA AAhc2 AAhc3

Design 1: Gaussian i.i.d. shocks
0.95 1 80.32 77.86 80.36 79.80 77.42 33.00 80.14 79.98 79.98

6 92.02 88.44 92.00 91.92 89.02 85.68 91.88 91.92 91.84
12 91.82 90.14 91.74 91.94 90.56 88.80 91.24 91.28 91.24
18 91.90 90.36 91.98 91.72 90.22 89.30 91.38 91.40 91.42

1.00 1 79.04 76.14 79.12 79.50 76.40 15.28 79.32 79.34 79.24
6 92.06 87.66 92.22 91.82 88.64 75.14 91.88 92.02 91.94
12 92.56 89.86 92.70 92.78 90.12 84.96 93.06 93.00 93.06
18 92.06 90.72 92.08 92.04 90.50 87.54 92.08 92.14 92.18

Design 2: Gaussian GARCH shocks
0.95 1 84.48 82.16 84.62 84.64 82.88 41.62 84.26 84.46 84.62

6 92.30 89.74 92.36 92.44 89.18 87.80 92.22 92.20 92.20
12 91.94 90.44 91.90 92.14 90.28 89.90 91.72 91.70 91.64
18 91.76 90.70 91.76 91.66 90.52 90.30 91.50 91.56 91.58

1.00 1 84.30 81.48 84.46 84.36 82.22 16.94 84.34 84.42 84.38
6 92.52 89.44 92.64 92.70 89.50 75.92 92.62 92.66 92.72
12 92.78 90.28 92.86 92.40 90.06 85.76 93.02 92.86 92.94
18 92.14 90.78 92.12 92.20 90.32 88.18 92.28 92.32 92.28

Design 3: t-student i.i.d. shocks
0.95 1 78.36 74.78 78.54 77.46 74.68 32.14 78.34 78.02 78.32

6 91.80 88.08 91.80 92.08 88.34 86.58 91.72 91.60 91.54
12 91.84 90.40 92.00 91.74 90.08 88.90 92.08 92.06 92.06
18 91.74 89.86 91.50 91.70 89.82 89.52 91.32 91.32 91.44

1.00 1 77.48 73.44 77.98 76.18 73.88 14.62 77.30 77.50 77.68
6 92.00 88.28 91.78 92.06 88.08 73.00 92.02 91.78 91.72
12 92.90 89.62 92.80 92.80 89.62 83.60 92.82 92.82 92.66
18 92.16 90.26 92.20 92.36 90.60 86.60 92.30 92.42 92.40

Design 4: mix-gaussian GARCH shocks
0.95 1 92.92 86.04 93.40 93.76 91.70 47.00 92.64 92.84 93.18

6 93.68 91.62 93.72 93.64 92.00 90.54 93.72 93.78 93.80
12 92.48 91.64 92.38 92.54 91.70 90.92 92.60 92.60 92.52
18 92.00 91.26 91.82 91.78 90.76 90.86 91.70 91.62 91.74

1.00 1 93.14 84.72 93.72 93.54 91.42 20.76 92.78 93.18 93.44
6 94.20 91.86 94.20 93.96 92.14 80.00 94.52 94.58 94.50
12 92.30 91.48 92.28 92.40 91.58 87.54 92.88 92.88 92.80
18 92.26 92.12 92.26 92.16 91.64 89.22 92.26 92.30 92.20

Table E.2: Coverage probability (in %) of (size-adjusted) confidence intervals for β(ρ, h)×0.9 with
a nominal level of 90% and n = 95. 5,000 simulations and 1,000 bootstrap iterations.
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ρ h RB RBper−t RBhc3 WB WBper−t GBLR AA AAhc2 AAhc3

Design 1: Gaussian i.i.d. shocks
0.95 18 89.44 87.52 89.46 89.66 88.74 90.02 87.20 87.40 87.68

40 90.30 87.92 90.28 91.06 88.98 90.02 88.74 89.08 89.48
1.00 18 88.62 88.78 88.56 89.14 89.58 90.66 82.16 82.70 83.02

40 86.56 84.80 86.52 86.64 85.78 90.66 78.56 78.88 79.16
Design 2: Gaussian GARCH shocks

0.95 18 86.64 86.44 86.70 88.58 88.20 81.98 84.28 84.62 85.22
40 89.18 86.84 89.24 90.36 87.90 81.98 87.46 87.88 88.32

1.00 18 87.10 87.50 87.22 89.26 89.72 87.56 80.82 81.28 81.94
40 84.10 82.56 84.10 85.46 85.16 87.56 76.54 76.88 77.30

Design 3: t-student i.i.d. shocks
0.95 18 89.06 88.04 89.06 89.82 88.78 89.96 86.04 86.68 87.38

40 89.84 87.26 89.94 90.66 88.70 89.96 88.04 88.72 89.46
1.00 18 89.36 88.96 89.54 89.98 89.42 90.92 82.36 83.00 83.64

40 85.96 84.90 85.82 86.52 86.24 90.92 77.90 78.54 79.28
Design 4: mix-gaussian GARCH shocks

0.95 18 83.00 86.32 83.10 84.50 87.50 83.20 81.22 81.54 82.00
40 87.20 86.18 87.24 88.64 87.56 83.20 86.00 86.50 87.02

1.00 18 84.06 88.68 84.22 86.04 90.42 86.84 76.98 77.34 77.80
40 81.24 84.06 81.20 82.76 85.90 86.84 73.44 73.98 74.36

Table E.3: Coverage probability (in %) of confidence intervals for β(ρ, h) with a nominal level of
90% and n = 240. 5,000 simulations and 1,000 bootstrap iterations.

E.1 Monte-Carlo Simulations for a VAR model

We consider a Bivariate VAR(4) model as in Montiel Olea and Plagborg-Møller (2021b):

y1,t = ρy1,t−1 + u1,t,

(
1− 1

2
L

)4

y2,t =
1

2
y1,t−1 + u2,t,

(
u1,t

u2,t

)
i.i.d.∼ N

(
0,

(
1 0.3

0.3 1

))
.

We construct confidence intervals for the reduced-form impulse response of y2,t with respect

to the shock u1,t, that is, we set ν = (1, 0) and i = 2 according to the notation of Section 7.

The confidence intervals that we use are listed below:

1. RB: confidence interval as in (26) based on the LP-residual bootstrap in Section 7.

2. RBper−t: equal-tailed percentile-t confidence interval based on the LP-residual boot-

strap described in Section 7 and similar to the one described in Remark 4.1.

3. WB: confidence interval as in (26) but using cwb,∗
n (h, 1−α) instead of c∗n(h, 1−α), where
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cwb,∗
n (h, 1 − α) is based on the LP-wild bootstrap, that is, the LP-residual bootstrap

described in Section 7 with a different step 2 as in Remark 3.2.

4. WBper−t: equal-tailed percentile-t confidence interval based on the LP-wild bootstrap.

5. AA: standard confidence interval as in Montiel Olea and Plagborg-Møller (2021a).

Table E.4 presents the results of the simulation in terms of coverage probability and

median length. It reports qualitatively similar results as the ones presented in Section 6.

The confidence interval RB performs better than AA and is similar to WB for all horizons.

Coverage Median length

h RB RBper−t WB WBper−t AA RB RBper−t WB WBper−t AA

ρ = 0.00
1 89.700 89.660 90.160 90.040 89.280 0.232 0.232 0.235 0.235 0.228
6 90.440 89.180 91.200 90.060 88.640 1.450 1.440 1.487 1.476 1.376
12 89.320 88.780 90.320 89.860 87.480 1.572 1.565 1.614 1.605 1.490
36 89.940 89.500 90.760 90.560 88.160 1.657 1.653 1.705 1.701 1.577
60 89.300 89.220 90.220 90.200 87.200 1.771 1.767 1.826 1.824 1.671

ρ = 0.50
1 89.820 89.800 90.160 90.060 89.380 0.232 0.232 0.235 0.235 0.228
6 90.340 88.920 91.040 89.860 88.040 1.705 1.680 1.744 1.720 1.590
12 89.080 87.820 90.040 88.640 86.660 1.968 1.942 2.017 1.997 1.830
36 89.880 89.460 90.840 90.320 88.160 2.036 2.023 2.095 2.082 1.934
60 89.060 89.060 90.120 90.220 86.500 2.178 2.169 2.251 2.238 2.048

ρ = 0.95
1 89.740 89.740 90.120 90.080 89.320 0.232 0.232 0.236 0.236 0.229
6 89.640 88.880 90.360 89.500 85.960 2.346 2.243 2.393 2.289 2.084
12 87.960 87.860 88.500 88.660 81.500 4.824 4.374 4.935 4.482 3.786
36 82.740 80.660 83.740 82.020 77.380 6.207 5.640 6.421 5.836 5.040
60 88.300 87.300 89.380 88.500 82.460 6.003 5.644 6.197 5.826 5.185

ρ = 1.00
1 89.900 89.780 90.200 90.100 89.420 0.233 0.233 0.236 0.236 0.229
6 87.420 88.520 87.940 89.180 82.060 2.483 2.333 2.534 2.381 2.152
12 82.920 87.020 83.960 87.860 71.540 5.950 5.142 6.067 5.266 4.306
36 70.060 73.460 70.800 74.580 46.320 14.159 10.863 14.556 11.188 7.528
60 53.060 57.300 54.340 58.560 28.860 13.932 10.433 14.365 10.767 7.904

Table E.4: Coverage probability (in %) and median length of confidence intervals for β(ρ, h) with
a nominal level of 90% and n = 240. 5,000 simulations and 2,000 bootstrap iterations.
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