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Abstract

A risk-neutral firm can perform a randomized experiment (A/B test) to learn about the effects of im-
plementing an idea of unknown quality. The firm’s goal is to decide the experiment’s sample size and 
whether or not the idea should be implemented after observing the experiment’s outcome. We show that 
when the distribution for idea quality is Gaussian and there are linear costs of experimentation, there are 
exact formulae for the firm’s optimal implementation decisions, the value of obtaining more data, and op-
timal experiment sizes. Our formulae—which assume that companies use randomized experiments to help 
them maximize expected profits—provide a simple alternative to i) the standard rules-of-thumb of power 
calculations for determining the sample size of an experiment, and also to ii) ad hoc thresholds based on 
statistical significance to interpret the outcome of an experiment.
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1. Introduction

There has been a revolution in the use of randomized experiments in the last twenty years 
across a number of fields. One prominent example is that of large internet companies, which 
routinely use experiments with tens of millions of users to test almost all of their product innova-
tions. Technology companies like Google, Facebook, and Microsoft call these experiments “A/B 
Tests”. A/B tests have revolutionized how these and other companies screen product innovations.

We propose practical tools and formulae for determining the sample size of experiments that 
are used to screen innovations, and offer concrete recommendations to decide which product in-
novations are worthy of being adopted based on the outcome of a randomized experiment. Our 
formulae—which assume that companies use randomized experiments to help them maximize 
expected profits—provide a simple alternative to i) the standard rules-of-thumb of power calcu-
lations for determining the sample size of an experiment, and also to ii) ad hoc thresholds based 
on statistical significance to interpret the outcome of an experiment.

We build upon the “A/B testing problem” proposed in Azevedo et al. (2020). In their model, a 
firm has a set of potential ideas of unknown quality, and can perform experiments to learn about 
each idea, subject to some limitations. The goal is to maximize the expected sum of quality of 
implemented ideas.1 Relative to this previous work, our key contribution is to solve the A/B 
testing problem for the specific case in which the distribution of idea quality is Gaussian. For 
clarity, we also focus exclusively on the case of a single idea and experimental cost linear in the 
size of the experiment. This allows us to provide exact results about the optimal implementation 
and experimentation strategies.2

The A/B testing problem with Gaussian priors considered in this paper has already been stud-
ied in a prescient early literature in statistical decision theory. Although the terminology and 
the context are different, Raiffa and Schlaifer (1961) and other researchers at the time were inter-
ested in the optimal use of scarce experimental resources long before this became a commonplace 
problem in the internet industry. The book by Raiffa and Schlaifer (1961), for example, provides 
a comprehensive treatment of the “mathematical analysis of decision making when the state of 
the world is uncertain but further information about it can be obtained by experimentation”. Here 
we generalize some of the known results in this classical statistical decision theory literature and 
explain their significance in the empirically relevant context of experimentation in technology 
companies.

We present four main results. First, there is a simple closed-form solution to the firm’s optimal 
implementation strategy—that is, the firm’s decision of whether to adopt a product innovation af-
ter observing the outcome of a randomized experiment (Proposition 1). According to our result, 
the firm should calculate the usual t-statistic based on the estimated quality obtained from the 
experiment, and implement the idea only if the t-statistic is above a threshold. The threshold 
depends on the parameters of the Gaussian prior and the experimental noise, and can be positive 
or negative.3 A practical takeaway is that a profit maximizing firm might find it optimal to im-

1 For example, if the firm runs a search engine, the ideas are potential improvements developed by engineers, quality 
is some key performance measure, and the experiments are A/B tests.

2 Azevedo et al. (2020) focus on approximate results without parametric assumptions.
3 A negative threshold arises when the prior mean of the idea quality distribution is positive. In this case, the firm’s 

optimal estimate of the true idea quality can be positive even when the signal obtained from the experiment is negative. 
This happens because the firm’s optimal estimator—the posterior mean of idea quality—is a convex combination between 
the signal and the prior.
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plement some ideas for which there is no evidence of a statistically significant positive effect on 
expected profits.

Second, there is a closed-form solution to the value obtained from an experiment (Proposi-
tion 2). The closed-form solution can be used to show that the value obtained from an experiment 
as a function of its sample size (assuming the firm uses the optimal implementation strategy) is 
nonnegative, bounded from above, strictly increasing, and, if the prior mean is different from 
zero, the value is first convex and then concave. The latter property has two qualitative implica-
tions for the determination of an experiment’s sample size. First, when the prior mean is different 
from zero, small randomized experiments have a limited scope (as the marginal value obtained 
from a small experiment will be close to zero).4 Second, the marginal value of large experiments 
is eventually decreasing and close to zero, which means that very large randomized experiments 
are unlikely to be optimal. The formula for the value obtained from an experiment was known in 
the case where the firm uses an optimal implementation strategy in Raiffa and Schlaifer (1961). 
We generalize the result to the case of an arbitrary threshold implementation strategy and we 
document the differences vis-a-vis the optimal production function.

Third, there is a simple characterization of the experiment’s optimal sample size (Proposi-
tion 3). A firm that maximizes expected profits can find the optimal sample size for an experiment 
by equating its marginal value to its marginal cost. Because in the A/B testing problem the value 
obtained from an experiment is first convex and then concave (as a function of the sample size), 
there will be typically two solutions satisfying the first-order conditions for optimality. The op-
timal sample size corresponds to the larger of these solutions. It is straightforward to write a 
simple computer algorithm that solves the first-order conditions and then selects that largest so-
lution. Thus, our results give practical and easy-to-implement alternatives to power calculations 
for sample size determination.

Fourth, we derive comparative statics of the firm’s optimal expected profits and the optimal 
sample size (Proposition 4). One qualitatively interesting result in our comparative statics is that 
the relation between the size of an experiment and the variance of the prior is not monotone. We 
show that, when the prior mean is (in absolute value) smaller than the prior standard deviation, a 
higher prior variance can lead to smaller or larger experiments.5

By construction, the formulae for the implementation strategy and the experimentation strat-
egy are optimal if and only if the distribution of idea quality is indeed Gaussian. As a robustness 
check, we derive similar results for the case of regret minimization.6 Our results provide similar 
practical alternatives to using power calculations for determining an experiment’s sample size 
and to basing implementation decisions on statistical significance, although there are some im-
portant qualitative differences relative to model with a Gaussian prior. For instance, it is optimal 
to implement a product innovation whenever its t-statistic is positive. Also, in this adversarial 
setting it is never optimal not to experiment. Our results generalize results from the statistical 
decision theory literature in Bross (1950) and Somerville (1954). One advantage of the regret 
minimization approach is that it can be applied to a setting with little data from prior experi-
ments, where estimating a reasonable prior is difficult.

From the firm’s perspective, the principle of determining an experiment’s sample size by 
maximizing profits seems more appealing than the standard and prevalent practice of using power 

4 We note, however, that the interval where the value of an experiment is convex becomes smaller as the prior mean 
gets closer to zero.

5 In Section 3, we provide more details explaining the intuition behind this result.
6 In Section 4 we explain what regret is, and motivate its use.
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calculations for sample size determination.7 This point echoes the critiques of Meltzer (2001) and 
Manski and Tetenov (2016, 2019). The implementation of the optimal sample size is especially 
appealing in data-rich environments, such as experimentation in online firms, where information 
from past experiments is readily available and can be used to choose the prior following an 
empirical Bayes approach (see the discussion in Azevedo et al. (2019) and the references therein).

The rest of the paper is organized as follows. Section 2 presents the model, section 3 the re-
sults, section 4 the minimax regret case, and section 5 a numerical example. Section 6 concludes. 
Proofs are in the appendix.

2. Model

2.1. The model

A firm has a single innovation, or idea. The firm is uncertain about the quality of the idea. 
The true quality of the idea is a normally distributed random variable � with mean M in R and 
variance s2. The firm can perform an experiment (also known as an A/B test) to observe a noisy 
signal of quality. An experiment with n users gives a normally distributed signal �̂, where the 
mean is equal to the (unknown) true quality, and the variance σ 2/n is known. The firm incurs a 
cost c per user in the experiment.

The firm has two choice variables. The firm can choose an experimentation strategy n in R+, 
the number of users assigned to the experiment.8 We also refer to n as how much data to use. 
After observing the result of the experiment, the firm can choose an implementation strategy S

equal to 0 or 1 depending on whether the firm wants to implement the idea. S is a measurable 
function of the signal realization �̂. The firm’s payoff is the expected quality of the idea if 
implemented minus the cost of experimentation,

�(n,S) = E[S · �] − c · n.

The expectation in the display above is taken jointly over the signal realization and the idea’s 
unknown quality. The firm’s goal is to choose the experimentation and implementation strategy 
to maximize its payoff.

2.2. Related literature

This problem is a particular case of the A/B testing problem from Azevedo et al. (2020). The 
key restrictions are the Gaussian prior, single idea, and linear cost. The restrictions let us focus 
on additional insights from the Gaussian case. This is also a particular case of what Raiffa and 
Schlaifer (1961) section 5.5 call a two-action problem with a scalar state, linear payoffs, and a 
Gaussian prior.

Some results below are known from prior work. We include known results for clarity and 
credit prior work in detail along with each result. Notably, the formulas for the production func-
tion are known for the case of an optimal implementation strategy. Propositions (2) and (6)
generalize the known formulas to arbitrary threshold implementation strategies.

7 See for example List et al. (2011); Athey and Imbens (2017).
8 We take n to be a real number for simplicity, but in practice the size of an experiment has to be an integer. In almost 

any practical application n is sufficiently large so that rounding to an integer is not an issue.
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2.3. Notation

We denote the following pieces of notation. First, we denote the realization of the random 
variable � as δ and the realization of �̂ as δ̂. Next, we denote the normalized mean as m := M/s

and the share of the variance of the signal explained by the prior as θn := s2/(s2 + σ 2/n) for 
n > 0 and θ0 := 0.

Finally, we denote the posterior mean of quality after an experiment of sample size n with 
result δ̂ as

P(δ̂, n) := E[�|�̂ = δ̂].

3. Results

3.1. Optimal implementation strategy

A standard formula for Bayesian updating with a Gaussian prior is that the posterior mean is 
an average of the signal δ̂ and the prior mean M :

P(δ̂, n) = θnδ̂ + (1 − θn)M .

Moreover, it is optimal for the firm to implement an idea iff the posterior mean is positive. This 
implies that the optimal implementation strategy is the following threshold rule.

Proposition 1 (Optimal implementation strategy). It is optimal to implement an idea iff the signal 
δ̂ is greater than t∗n · σ/

√
n, where we refer to t∗n as the threshold t-statistic

t∗n := −m · σ/
√

n

s
.

The firm should calculate the standard frequentist t-statistic of quality associated with the 
experiment—i.e., �̂/(σ/

√
n)— and implement the idea only if the t-statistic is above the thresh-

old t∗n . The threshold t-statistic tells the firm how strict it should be in implementing the idea. If 
t∗n happens to be equal to 1.65 (the 95th percentile of the Gaussian distribution), then the opti-
mal implementation strategy corresponds to the commonly used rule of thumb of a statistically 
significant positive effect with a 5% p-value. The formula makes clear that there is no reason 
for the rule of thumb to be optimal. The threshold p-value—which we define as the probability 
that a standard normal exceeds t∗n—could be much greater if, for example, the prior about idea 
quality has mean close to zero, or if the experiment is very precise relative to s. And the threshold 
p-value could be much smaller if, for example, the prior mean idea quality is sufficiently larger 
than 0.

A practical takeaway is that, in the case of positive prior mean, it is optimal to implement ideas 
even if there is no statistically significant evidence that the idea works. For example, DellaVigna 
and Linos (2022) study experiments performed by nudge units in the US government. They find 
that the average nudge has a positive effect. Assuming a Gaussian prior, the optimal strategy is 
to implement ideas by default, and only stick to the status quo if an experiment reveals bad news. 
The optimal strategy is strikingly different from the standard practice to implement only ideas 
for which the experiment reveals good news with a t-statistic above 1.65.

Another practical takeaway is that the optimal implementation strategy can be quite aggres-
sive, even in the case of a negative prior mean. For example, consider the case where the absolute 
5
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value of the prior mean is smaller than s. Then, as long as the variance of experimental noise is 
smaller than the variance of the prior, the optimal threshold t-statistic is below one. This is con-
siderably more aggressive than the standard practice of 1.65.

3.2. Optimal experimentation strategy

The optimal experimentation strategy depends on the value of allocating n users to the experi-
ment. Azevedo et al. (2020) term this the production function. We extend their original definition 
to allow for cases in which the firm uses a decision rule that implements an idea whenever the 
t-statistic is above an arbitrary threshold τ . That is, we define the production function fτ(n) as

fτ (n) := E
[
� · 1{�̂≥τ ·σ/

√
n}

]
− M+.

Denote the optimal production function as f (n) := ft∗n (n), where t∗n is the optimal implementa-
tion threshold in Proposition 1.

Under a Gaussian prior, there is a closed-form solution for the production function. Our 
formula generalizes known results on the production function for an optimal implementation 
strategy to an arbitrary threshold strategy.9

Proposition 2 (Production function). The production function is

fτ (n) =
{

s
{√

θnφ
(
m

√
θn − τ

√
1 − θn

) + m	
(
m

√
θn − τ

√
1 − θn

)}
, if m < 0

s
{√

θnφ
(
m

√
θn − τ

√
1 − θn

) − m	
(−m

√
θn + τ

√
1 − θn

)}
, if m ≥ 0

(1)

for n > 0. In addition, the optimal production function is

f (n) = s

{√
θnφ

(
m√
θn

)
− |m|	

(−|m|√
θn

)}
.

Both production functions are bounded and increasing. In addition, when m �= 0, the production 
functions, fτ (n) and f (n), and their marginal product, f ′

τ (n) and f ′(n), satisfy:

1. limn→0 fτ (n) = −s|m|	(|m|τ/m) < 0 and limn→0 f (n) = 0,
2. limn→0 f ′

τ (n) = +∞ and limn→0 f ′(n) = 0,
3. limn→∞ f ′

τ (n) = 0 and limn→∞ f ′(n) = 0

Furthermore, there exists a threshold n̂ such that the optimal production function is convex on 
the interval [0, n̂] and concave on the interval [n̂, ∞].

Fig. 1 and 2 present examples of production functions for a given threshold τ = 1.65 and 
optimal threshold τ = t∗n . The production function f1.65 is negative and concave near zero, while 
the optimal production function f is positive and convex near zero (as long as M �= 0). For large 
values of n, both production functions are eventually concave.

9 This formula is known in the literature for the case where τ is the optimal threshold t∗n . The earliest reference we 
could find is Grundy et al. (1956) equation (4), under a slightly different setup. The formula also appears in Raiffa and 
Schlaifer (1961). The formula is related but different from other formulas in the value of information literature. Keppo 
et al. (2008) derive a closed-form solution for the value of information in the case of two possible states, two possible 
actions, and normally distributed signals. Moscarini and Smith (2002) derive an asymptotic formula for the value of 
information with a finite number of signals and actions.
6
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Fig. 1. The production function f1.65(n).

Fig. 2. The optimal production function f (n).

For a given production function fτ (n) with a given threshold τ , the optimal experimenta-
tion strategy is simple. When the cost of obtaining information always exceeds the value of 
information—i.e., c · n > fτ (n) for all n > 0—it is optimal not to experiment at all and set 
n∗

τ = 0. When the value of information exceeds the cost of obtaining information for some n, the 
optimal sample size equates the marginal cost and marginal product. The same principle holds 
for the optimal experimentation strategy n∗ for the optimal production function f (n) = ft∗(n).
n

7
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Proposition 3 (Optimal experimentation strategy). Consider a firm that implements any idea for 
which the t-statistic is above a threshold τ . Assume that fτ (n) > c ·n for some n > 0. The optimal 
experimentation strategy n∗

τ solves the first order condition

f ′
τ (n) = c.

In addition, if f (n) > c · n for some n > 0, the optimal experimentation strategy n∗ solves the 
first order condition

f ′(n) = c.

Proposition 3 gives a practical method to determine the optimal sample size, especially in 
the case where data on previous experiments is available. Data on previous experiments can 
be used to estimate the parameters of the Gaussian prior. Proposition 2 then gives a formula 
for the marginal product.10 The optimal sample size can then be determined as a function of 
the marginal cost of data. This is similar to the empirical Bayes method used in Azevedo et al. 
(2020). However, the Gaussian case is simpler for two reasons. First, estimation of the parameters 
is simpler because it only depends on estimating the mean and variance of the idea distribution. 
Second, the formula for the production function is simpler. In particular, the formula can be 
implemented using standard spreadsheet software, much like a power calculation.

Our practical method differs from the standard rule of thumb of power calculations. For exam-
ple, in medical trials, one typically specifies a “minimum medically effective” treatment effect. 
The experiment size is then chosen to guarantee a power of 0.8 at this treatment size. Similar 
procedures are often used by researchers and by companies performing A/B tests.

This standard power calculation approach has been criticized because it has no reason to 
be optimal, or even close to optimal (Manski and Tetenov, 2016, 2019). Proposition 3 makes 
clear that power calculations are not optimal in a practical setting that is well-approximated by 
our assumptions. In particular, the optimal experimental size does not depend on an arbitrary 
“minimum medically effective” effect size, or on an arbitrary power level. Instead, the optimal 
experimental size depends on the marginal cost of data c, on the experimental noise σ , and on 
the parameters M and s of the prior.

Next, we present comparative statics for the optimal production function f (n) and its optimal 
experimental strategy n∗.

Proposition 4 (Comparative statics). Suppose that the conditions of Proposition 3 hold. Then, 
the comparative statics for the production function f (n) and optimal experimental size n∗ are:

1.
∂f

∂M
> 0 iff M < 0

2.
∂f

∂s
> 0

3.
∂n∗

∂M
> 0 iff M < 0

10 See Equation (4) in Appendix for an exact formula.
8
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4.
∂n∗

∂s
> 0 if |M| > s

> 0 if |M| < s and f ′(ñ) > c

< 0 if |M| < s and f ′(ñ) < c,

where

ñ =
σ 2

(
3m2 + 2 + √

m4 + 20m2 + 4
)

2s2
(
1 − m2

) .

The practical takeaways of the comparative statics are qualitative guidelines for experimental 
design. (1) and (2) say that the level of the production function is higher when either the mean is 
close to zero or prior variance is high. This is useful for determining whether to incur a fixed cost 
to set up an experimental infrastructure. For example, if innovations are very likely to be useful 
(large positive M and small s) then there is little point for a firm to set up an experimentation 
platform. It would be better to simply implement all ideas without experimenting and save on 
fixed costs.

Comparative statics (3) and (4) are about the optimal sample size of an experiment. (3) says 
that experiments should be larger when the prior mean is close to zero. The practical takeaway 
is similar to comparative statics (1). When the mean is far from zero, it is better to do smaller 
experiments. Comparative statics (4) is about how scale depends on the variance of the prior. 
Interestingly, the relationship is not monotone. The only relatively clear case is when |M| > s, 
so that most of the mass of the prior is on the same side of 0. In that case, a higher prior vari-
ance leads to larger experiments. This is an apparent contradiction with the finding in Azevedo 
et al. (2020) that fatter-tailed priors lead to small optimal experiment sizes. The results do not 
mathematically contradict each other because our result is about the variance of a Gaussian prior, 
whereas the Azevedo et al. (2020) result is about the thickness of the tail of the prior. Neverthe-
less, comparative statics (4) shows that it is not possible to conclude that a more spread out prior 
always leads to smaller (or larger) experiments.

The intuition behind these comparative statics is as follows. (1) is true because a smaller value 
of |M| (ideas that are closer to being marginal ex-ante) pushes towards both a higher value of 
experimentation f (n) and a greater marginal value f ′(n). The higher marginal value of data in 
turn implies the comparative statics (3) for n∗, because n∗ is the greater root of f ′(n) = c, at 
a point where f ′(n) is decreasing in n. Comparative statics (2) holds because more uncertainty 
about quality increases the value of experimentation.

The most subtle result is comparative statics (4). The key point is a rescaling argument. If we 
multiply the parameters M , s, and σ by a constant, the problem is unchanged, so the production 
function is multiplied by the constant. Abusing notation and denoting the production function as 
a function of n and the parameters, we have

f (n|M,s,σ ) = s · f (n|M/s,1, σ/s).

That is, the production function for any given parameters equals the production function for a 
normalized prior with s = 1 and M and σ scaled down by a factor of s. We show this formally 
in the proof for Proposition 4.

Consider now the effect of increasing s on f ′(n|M, s, σ), which equals s ·f ′(n|M/s, 1, σ/s). 
There are three effects: s increases, M/s decreases, and σ/s decreases. Increasing s always in-
creases f ′, which pushes towards greater n∗. However, the effect of decreasing σ/s can decrease 
f ′. For example, in the case of large n, decreasing σ/s moves into the range where information is 
9
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almost perfect, so that the marginal value f ′ is small.11 This effect may dominate, which is why 
the sign of the comparative statics depends on the parameters as described in the proposition.

4. The minimax regret case

4.1. Model

Our analysis in the previous sections relied on the choice of a specific prior distribution for 
idea quality. This means that our formulae for the implementation strategy and the experimenta-
tion strategy are optimal if and only if the distribution of idea quality is indeed Gaussian.

One possible alternative to maximizing expected profits for a fixed prior is to optimize the 
worst-case expected profit that could be attained under a large class of possible priors. For in-
stance, one could consider all possible Gaussian priors with parameters (M, s). Unfortunately, 
the results of this exercise turn out to be quite anticlimactic. If M is a very large negative con-
stant, Proposition 1 implies that an extremely large value of ̂δ is needed to implement an idea. 
This implies that the production function is close to zero for any n, which makes the value of 
experimentation to be close to zero.

The pessimistic nature of minimax approaches is a well-understood phenomenon. Savage 
(1951) has suggested the use of regret as a target criterion (instead of utility or profits). In our 
problem, when the quality of the innovation is δ, the firm’s expected payoff from the strategy 
(n, S) is

u(n,S; δ) = δ E[S|� = δ] − cn,

where the expectation is taken over the experimental noise, n ≥ 0 is the size of the experiment, 
and S ∈ {0, 1} is the implementation strategy that depends on the result of the experiment, �̂. 
Define the regret of the strategy (n, S) as the difference between the optimal expected payoff if 
δ were observable, minus the expected payoff from choosing (n, S). Regret thus becomes

R(n,S, δ) = δ · 1{δ>0} − u(n,S; δ). (2)

Consider the strategy (n∗, S∗) that solves the problem

inf
n≥0,S

sup
δ∈R

R(n,S, δ). (3)

The strategies that minimize the worst-case regret are usually referred to as minimax regret 
strategies. These strategies have been proposed by Savage (1951) as a guideline for making 
decisions under uncertainty. Minimax regret is one of the most prominent alternatives in the 
statistics literature on how to make implementation and experiment design decisions (see Manski 
(2019)). In what follows, we write (n∗

MMR, S∗
MMR) instead of (n∗, S∗) to emphasize that the 

strategies that minimize the maximum regret are minimax regret strategies.

4.2. Results

It is well known that in Gaussian experiments the minimax regret implementation decision is 
to implement the idea if and only if the signal is positive.12 That is,

11 The simplest intuition comes from the large n approximation to the production function from Azevedo et al. (2020)
Theorem 1. The marginal product for large n is approximately proportional to (σ/s)2, which is decreasing in s.
12 See Proposition 1 part (iii) in Stoye (2012).
10
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Proposition 5 (Minimax regret optimal implementation strategy). It is optimal to implement an 
idea iff the signal δ̂ is positive.

This strategy is what Manski (2004) calls the empirical success rule. A practical takeaway for 
this rule is that, from a minimax regret perspective, there is no reason to have a status quo bias. 
As a concrete example, consider a firm choosing between a standard marketing email and a new 
marketing email. The firm has little prior information and decides instead to use the minimax 
regret criterion. If switching to the new marketing email is costless, then it makes sense to switch 
as long as the experimental point estimate is positive. This is in contrast to the standard practice, 
for example in internet firms and in the nudge units studied in DellaVigna and Linos (2022), of 
implementing only ideas with statistically significant positive results, even when implementation 
costs are trivial.

For a fixed sample size, Stoye (2009) characterizes the minimax regret strategies for a problem 
similar to ours. His results include a comparison between the minimax regret strategies and 
the empirical success rule. In what follows we conduct a complementary analysis. For a given 
implementation strategy, we study the sample size determination problem using the minimax 
regret criterion. We restrict our analysis to strategies motivated by decisions based on t-statistics.

Let Sτ be a decision rule with a threshold t-statistic of τ . Define the cost function f̃τ (n) as 
the firm’s maximum regret with threshold strategy Sτ and sample size n:

f̃τ (n) = sup
δ∈R

R(n,Sτ , δ).

Let f̃ (n) := f̃0(n) be the optimal cost function with the optimal implementation strategy from 
Proposition 5.

The next proposition shows that the minimax regret production function has a simple formula.

Proposition 6 (Minimax regret cost function). The cost function is

f̃τ (n) = σ√
n

b(|τ |) + cn,

for n > 0, and f̃τ (0) = 0. The function b is defined by

b(τ) = max
x

x	(τ − x).

Bross (1950) and Somerville (1954) studied the minimax regret strategy for a problem closely 
related to ours. The production function for the optimal threshold τ = 0 is derived in their work.

As in the Gaussian case, the closed-form solution to the cost function gives a simple method 
to determine the optimal experimentation strategy:

Proposition 7 (Minimax regret optimal experimentation strategy). Consider a firm with a deci-
sion rule with threshold t-statistic of τ and minimax regret objective. The optimal experimenta-
tion strategy solves the first order condition

f̃ ′
τ (n) = c.

That is,

nmmr
τ =

{
σb(|τ |)}2/3

.

2c

11
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The optimal experiment size is strictly positive.

These propositions offer a practical alternative to power calculations for choosing an exper-
imentation strategy. Practical implementation is even simpler than the Gaussian case because it 
requires no information on the prior. The optimal strategy depends only on the variable cost of 
experimentation and on the experimental noise. So this is a practical method even in cases where 
there is too little data on prior experiments to estimate a prior. Moreover, the formulae can be 
implemented easily, much like a traditional power calculation.

5. Illustrative numerical example

We now consider an illustrative numerical example. The example shows that, in plausible 
settings, our optimal experimentation strategy can perform considerably better than the standard 
rule-of-thumbs of power calculations and statistical significance. We based our setting on typical 
experiments run by brick-and-mortar firms with relatively small sample sizes.13

Consider a firm with 1,000 business units. The firm can choose a number n ≤ 1000 of identical 
business units to include in an experiment to test an innovation with unknown quality �. We 
define quality as the percent gain in revenue due to the innovation. The firm has a prior that 
quality follows a normal distribution with mean M = −5 and standard deviation s = 5.14 The 
experiment is noisy due to variance in revenue from each business unit. We assume that the 
experimental error is normal as in Section 2, and we set the parameter σ to 30.15

We consider several specifications for the marginal cost c of experimentation. We set c so 
that the total cost of running an experiment with all 1,000 business units, 1000c, is between 5% 
of revenue and 0.1% of revenue.16 Thus, we consider a range of costs spanning relatively high-
cost experimentation and relatively low-cost experimentation. The production function for this 
example is illustrated in Fig. 2.

Table 1 displays the optimal experimentation and implementation strategies under these dif-
ferent costs. In the highest-cost scenario, it is never optimal to implement the idea. When the 
cost of experimenting on all 1,000 business units is 1% of revenue, the optimal sample size is 
about 110 business units. As costs decrease, the optimal sample size increases; in the lowest-cost 
scenario, the optimal sample size is about 430 business units. The optimal implementation strat-
egy is to accept the innovation if the experiment’s t-statistic exceeds a small, positive threshold. 
Profits, when positive, range from 0.16% of revenue to 0.33% of revenue, when the size of the 
experiment is chosen optimally. This is a significant number. A firm that runs ten experiments in 
a year would then have an expected revenue gain between 1.6% and 3.3% of revenue.

We compare our optimal implementation and experimentation strategy with the standard rule-
of-thumb. The standard rule-of-thumb implementation strategy is to implement an idea if and 

13 See Pierce et al. (2021) for an example.
14 In practice the prior distribution might have been estimated from data on previous experiments. See Azevedo et al. 
(2019).
15 In our model, the parameters M , s and σ are known. In practice, the parameters have to be estimated. The most 
direct approach is the empirical Bayes method in Azevedo et al. (2019). They make a frequentist point estimate of 
the parameters, and use it for counterfactuals. This approach works well in their setting of a large online product with 
extensive data on previous experiments, where the parameters can be estimated with some precision. In settings with less 
data, uncertainty about the parameters may be a first-order concern. In this case, one possibility is to also place a prior 
on σ 2 and consider a model where the available data are the estimated effect and its standard error.
16 Consequently, c is between .1/1000 and 5/1000.
12
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Table 1
Numerical comparison of Bayesian optimal strategy, standard power calculation rule of 
thumb, and minimax regret strategy.

Cost of an experiment of size 1,000 5 1 0.5 0.1

n̂: lower-bound of n∗ (Proposition 2) 18 18 18 18

t∗n : optimal implementation strategy - 0.572 0.458 0.289
n∗: optimal experimentation strategy 0 110 172 430
profits under t∗n & n∗ 0% 0.158% 0.226% 0.327%

t1−α : rule of thumb threshold t-statistic 1.645 1.645 1.645 1.645
n∗
pc : rule of thumb sample size 890 890 890 890

profits under t1−α & n∗
pc -4.097% -0.535% -0.090% 0.266%

profits under t∗n & n∗
pc -4.058% -0.497% -0.052% 0.304%

tMMR : minimax regret threshold t-statistic 0 0 0 0
n∗
MMR

: minimax regret sample size 64 187 296 866
profits under tMMR & n∗

MMR
-0.220% 0.115% 0.195% 0.305%

Notes: The numerical example compares the Bayesian optimal strategy, the minimax regret 
strategy, and the power calculation for selecting sample size. Profits are measured in terms 
of fraction of gains in revenue. The parameters are prior mean M = −5, prior standard 
deviation s = 5, experimental noise σ = 30, and statistical significance level α = 5%. The 
implementation strategy is S = 1{t̂ > T }, where t̂ is the experiment’s t -statistic and T is 
either the optimal threshold t∗n (Proposition 1) or the p-value threshold t1−α (the (1 −α)th 
percentile of a standard normal distribution). Denote by n the sample size of the experi-
ment. Profits are E[S · �] − cn.

only if it is statistically significant at the 5% level in a one-sided t-test. This means that an idea 
is implemented if the experiment’s t-statistic is larger than t0.95 = 1.645, which is considerably 
more strict than our threshold t∗n . Table 1 reports that the t∗n in our numerical example is small and 
positive, ranging from 0.57 to 0.29. Compared to our implementation strategy, the rule-of-thumb 
will reject a profitable innovation more frequently.

The standard rule-of-thumb experimentation strategy is to select sample size based on a power 
calculation. In a power calculation, the experimenter starts from a “minimum significant effect 
size”. The experiment size is then chosen to guarantee some minimum power if the effect is 
greater than the minimum significant effect size, in a one-sided 5% t-test. We calculated the 
power calculation sample size with a required power of 80% and minimum significant effect size 
of a 2.5% gain in revenue. This yielded a sample of about 890.

Table 1 compares profits under the optimal strategy with profits under the standard rules of 
thumb. When the experimental cost is large, the power calculation performs poorly, and profits 
under a power calculation are negative. The reason is that, in this case, the optimal sample size is 
relatively small, whereas the power calculation suggests running a large and costly experiment. 
On the other hand, under the smallest experimental cost of 0.1%, the power calculation performs 
well. When costs are low, it is optimal to experiment on many business units, and this is what 
the power calculation suggests. In this case, profits under a power calculation and the optimal 
implementation strategy are only 10% less than optimal.

Finally, the table describes the performance of a minimax regret strategy. We find that, for our 
illustrative example, the minimax regret strategy performs considerably better than the power 
calculation rule-of-thumb, and profits are relatively close to optimal. This suggests that, as argued 
by Manski and Tetenov (2016, 2019), the minimax regret strategy can be a good candidate for 
practical applications.
13
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There are two caveats to the illustrative example. First, the fact that a power calculation sug-
gests a sample size that is too large is an artifact of the example parameters. In general, the power 
calculation could give a sample size either above or below the optimal experiment size. The rea-
son is that the power calculation depends only on how noisy the experiment is (σ ) and on the 
arbitrarily chosen minimum significant effect and power level. In contrast, the optimum depends 
the level of noise σ , as well as the cost and the prior. Second, throughout this paper we have 
maintained the assumption that the only cost of experimentation is the cost of acquiring more 
data. In practice, there can be other costs, such as the opportunity cost of resources that could 
be used to test other ideas (Azevedo et al., 2020). Numerically, these examples can look quite 
different. However, it is still true that the power calculations do not depend on the same variables 
as the optimal experimentation strategy. Therefore, the power calculation may or may not have 
good performance, much like in the simple case we consider.

6. Conclusion

We study the A/B testing problem in the case where the prior distribution of idea quality is 
Gaussian. We propose practical tools and formulae for determining the sample size of experi-
ments that are used to screen innovations, and offer concrete recommendations to decide which 
product innovations should be adopted based on the outcome of a randomized experiment. There 
is a simple closed-form solution to the firm’s optimal implementation strategy (Proposition 1). 
There is also a closed-form solution to the value of information obtained from an experiment 
(Proposition 2). There is a simple recommendation for deciding the size of a randomized exper-
iment based on equating the marginal value of the experiment to its marginal cost (Proposition 
3). We also derive qualitative principles for experimentation from comparative statics (Propo-
sition 4). As a robustness check, we provide similar results for the case of expected regret 
minimization for an adversarial prior.

We compare the optimal strategy under the Gaussian prior, the minimax regret strategy, and 
the standard power calculation for selecting sample size. In an illustrative example, we demon-
strate that these optimal strategies can considerably outperform the standard rules-of-thumb. The 
results suggest that, in a setting that fits the assumptions well, the Bayesian optimal strategy and 
the minimax regret strategy can improve practical A/B testing.

Data availability

No data was used for the research described in the article.

Appendix A. Proofs

A.1. Proof of Proposition 1

Proof. The firm implements the idea if and only if the posterior mean quality is positive:

P(δ̂, n) = θnδ̂ + (1 − θn)M > 0 ⇐⇒ δ̂ > −M · σ 2/n

s2 = t∗n · σ/
√

n �

14
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A.2. Proof of Proposition 2

Proof. Denote τn := τ · σ/
√

n. The innovation is implemented if and only if the signal exceeds 
τn. Then, the production function equals the expected value of the innovation times the probabil-
ity it is implemented. Therefore,

fτ (n) =
∫

δ · P
(
�̂ ≥ τn|� = δ

)
· g(δ)dδ − M+

=
∫

δ · 	
(

δ − τn

σ/
√

n

)
· g(δ)dδ − M+

=
∫

(δ − M) · 	
(

δ − τn

σ/
√

n

)
· g(δ)dδ + M

∫
	

(
δ − δ∗

n

σ/
√

n

)
· g(δ)dδ − M+

The first term can be simplified to s
√

θn · φ(
(m − τn/s)

√
θn

)
using integration by parts and 

setting:

dv = (δ − M) · g(δ)dδ

u = 	

(
δ − τn

σ/
√

n

)
.

The second term can be simplified to M ·	(
(m − τn/s)

√
θn

)
using the following identity for 

the Gaussian distribution:∫
	(a + bx)φ(x)dx = 	

(
a√

1 + b2

)
.

Note that (m − τn/s)
√

θn = m
√

θn − τ
√

1 − θn. Then, combining gives Equation (1). The 
optimal production function follows by substituting τ = t∗n = −mσ/(s

√
n).

The production function is strictly increasing because differentiating Equation (1) shows that:

f ′
τ (n) = s3

2σ 2 · (1 − θn)
2

√
θn

φ
(
m

√
θn − τ

√
1 − θn

)(
1 +

(
m

√
1 − θn + τ

√
θn

)2
)

, (4)

a function that is positive for all n since θn = s2/(s2 + σ 2/n) ∈ (0, 1). Similarly, the derivative 
of the optimal production function is:

f ′(n) = 1

2n2 ·
√

θn

s
· φ

(
m√
θn

)
· σ 2 · θn = s3

2σ 2 · (1 − θn)
2

√
θn

· φ
(

m√
θn

)
, (5)

a function that is positive for all n. Therefore, the optimal production function is also strictly 
increasing.

These production functions are bounded because they are strictly increasing, and as n → ∞, 
θn → 1, fτ (n) → s (φ(m) − |m|	(−|m|)), and f (n) → s

(
φ(m) −|m| ·	(−|m|)), a finite value.

From an analysis of the second derivative, the production function is concave near the origin 
and in the interval [n2, +∞). Differentiating Equation (1) twice shows that:

f ′′
τ (n) = −f ′

τ (n) ·
(

1 + 3θn

2
+ (m

√
θn − τ

√
1 − θn)xn(θn(1 − θn))

1/2
(

2 + x2
n

1 + x2
n

))
,

where xn = (m
√

1 − θn + τ
√

θn). From Equation (4), f ′
τ (n) > 0. Then, the sign of the second 

derivative is the opposite of the sign of the following expression
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1 + 3θn

2
+ (m

√
θn − τ

√
1 − θn)xn(θn(1 − θn))

1/2
(

2 + x2
n

1 + x2
n

)
,

which is positive for n → 0 and n → ∞, since in those cases θn → 0 and θn → 1, respectively. 
Thus, we can conclude that f ′′

τ (n) is negative for values of n near zero and in an interval [n2, ∞)

for some n2 > 0.
For the optimal production function, we can conclude from an analysis of the second deriva-

tive that the production function is convex, then concave. That is

f ′′(n) = f ′(n) ·
(−4s6n2 + (M2 − s2)σ 2s2n + M2σ 4

s2θn

)
.

The sign of f ′′(n) depends on −4s6n2 + (M2 − s2)σ 2s2n + M2σ 4, a second order 
polynomial over n with a negative principal coefficient. Using the quadratic formula, the 

smaller root σ 2(
(M2−s2)−

√
M4+14M2s2+s4)

8s4 is negative, since M2 − s2 = √
M4 − 2M2s2 + s4 <√

M4 + 14M2s2 + s4. The larger of the two roots is positive and the inflection point:

n1 :=
σ 2

(
(M2 − s2) + √

M4 + 14M2s2 + s4
)

8s4 . (6)

The production function is convex over [0, n1), and concave over (n1, ∞)

Finally, by taking the limits of Equations (4) and (5), we find that limn→0 f ′
τ (n) = +∞, 

limn→0 f ′(n) = 0, limn→∞ f ′
τ (n) = 0, and limn→∞ f ′(n) = 0. �

A.3. Proof of Proposition 3

Proof. The optimal experimentation strategy n∗ maximizes fτ (n) − cn for n ≥ 0. The first order 
condition is f ′

τ (n) = c. Note that, in this case, the threshold t-statistic τ does not depend on n.
There must be at least one critical point that satisfies the first order condition, since (1) 

limn→0 fτ (n) − c ·n ≤ 0, since limn→0 fτ (n) is equal to s ·m ·	(−τ) if m < 0 and −s ·m ·	(τ)

if m ≥ 0 from Proposition 2; (2) fτ (n) − c · n > 0 for some n > 0 by assumption; and (3) 
fτ (n) − c · n < 0 for large n, since fτ (n) is bounded, as shown in Proposition 2, and c · n is not. 
Further, from (1) and (2), the solution n∗

τ cannot be a boundary solution and must be a critical 
point that satisfies the first order condition.

The previous explanation applies for the optimal production function f (n) as well: (1) is true 
since limn→0 f (n) = 0, and (2) and (3) follow from the same reasoning. The optimal experimen-
tation strategy n∗ must be a critical point that satisfies the first order condition. In this particular 
case, we can provide additional analysis and claim that there are either one or two solutions to 
the first-order condition, and n∗ is the largest solution.

From Proposition 2 and its proof, we know that when M �= 0, f ′(0) = 0 and limn→∞ f ′(n) =
0, and that f ′(n) is increasing over (0, n1) and decreasing over (n1, ∞), where n1 is defined in 
Equation (6). Therefore, the maximum exists and must satisfy the first order condition.

If there is only one solution to the first order condition, then this must be the optimal experi-
mentation strategy. Otherwise, there are two solutions to f ′(n) = c, one smaller than n1 and one 
larger. In this case, the sign analysis of f ′′(n) from the proof of Proposition 2 shows that the 
smaller critical point is a local minimum and the larger critical point is a local maximum, and so 
the larger critical point must be the optimal experimentation strategy.
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When M = 0, limn→0 f ′(n) = ∞ and limn→∞ f ′(n) = 0 by taking the limit of Equation (5). 
f ′(n) is strictly decreasing, since n1 = 0 when M = 0. Therefore, f ′(n) crosses c once and this 
critical point is a local maximum, and must be the optimal experimentation strategy. �
A.4. Proof of Proposition 4

The comparative statics results with respect to the production function f (n) hold under a 
general prior, and we prove these results under a general prior. We prove the comparative statics 
results with respect to the optimal sample size n∗ under a Gaussian prior.

Proof. 1.
∂f

∂M
> 0 iff M < 0

By Lemma A.2 in Azevedo et al. (2020), the production function is

f (n,M, s, σ ) = max
δ

+∞∫
−∞

δ · 	
( δ − δ

σ/
√

n

)
· 1

s
· h

(δ − M

s

)
dδ − M+.

By the envelope theorem, we have

fM(n,M, s, σ ) =
∫

δ · 	
(δ − δ∗

n

σ/
√

n

)
· 1

s
· h′(δ − M

s

)
· (−1)

s
dδ − 1{M > 0}.

Then, we set u = δ · 	
(

δ−δ∗
n

σ/
√

n

)
· 1

s
and v = h

(
δ−M

s

)
, and integrate by parts.

fM(n,M, s, σ ) = −
∫

udv − 1{M > 0}

=
∫

vdu − (uv)

∣∣∣+∞
−∞ − 1{M > 0}

=
∫

h
(δ − M

s

)
·
{1

s
	

(δ − δ∗
n

σ/
√

n

)
+ δ

s
· φ

(δ − δ∗
n

σ/
√

n

)
· 1

σ/
√

n

}
dδ

− 1{M > 0}
=

∫
h
(δ − M

s

)1

s
	

(δ − δ∗
n

σ/
√

n

)
dδ − 1{M > 0},

where the last equality holds because of the definition of δ∗
n, 

∫
δ · φ

(
δ−δ∗

n

σ/
√

n

)
· h

(
δ−M

s

)
dδ = 0.

If M < 0, then fM(n, M, s, σ) > 0 because each term inside of the integrand is positive. If 

M > 0, then since 	(·) ∈ [0, 1] and h(·)/s is a p.d.f., the integral 
∫

h
(

δ−M
s

)
1
s
	

(
δ−δ∗

n

σ/
√

n

)
dδ is 

smaller than 1, and so fM(n, M, s, σ) < 0.

2.
∂f

∂s
> 0

First, we prove that, under a general prior distribution, the production function is homoge-
neous of degree one over the prior mean, prior standard deviation, and experimental noise:

f (n,M, s, σ ) = s · f (n,M/s,1, σ/s). (7)

Again, by Lemma A.2 from Azevedo et al. (2020), the production function is

f (n,M, s, σ ) =
∫

δ · 	
(

δ − δ∗
n√
)

· 1 · h
(

δ − M
)

dδ − M+

σ/ n s s
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= s

(∫
(δ/s) · 	

(
(δ/s) − (δ∗

n/s)

(σ/s)/
√

n

)

· h
(
(δ/s) − (M/s)

)
d(δ/s) − (M/s)+

)
= s · f (n,M/s,1, σ/s).

We have essentially re-scaled the production function, setting the prior standard deviation 
to 1. Then, the scaled prior mean is M/s and the scaled experimental noise is σ/s.

Next, we show that the production function is decreasing over the experimental noise:

f (n,M, s, σ ) > f (n,M, s, σ ′).

The formula for the production function shows that σ and n each appear only once, and it 
must be that

f (n,M, s, σ ) = f (λ2 · n,M, s,λ · σ).

Then, take any σ ′ > σ and denote λ := σ ′/σ > 1. It follows that f (n, M, s, σ) = f (λ2 ·
n, M, s, σ ′) > f (n, M, s, σ ′), where the inequality is true because the production function is 
increasing over n (by Proposition 2).

Finally, we prove the comparative statics result. By equation (7) and the chain rule, 
fs(n, M, s, σ) is equal to

f (n,M/s,1, σ/s) + fM(n,M/s,1, σ/s) ·
(−M

s2

)
+ fσ (n,M/s,1, σ/s) ·

(−σ

s2

)
.

The first term is positive since by Proposition 2, the production function is always positive. 
The second term is positive since M and fM have opposite signs (as proven above in the 
first comparative statics). Finally, the third term is positive because the production function is 
decreasing over the experimental noise.

3.
∂n∗

∂M
> 0 iff M < 0

Proposition 3 shows that the optimal experimental scale n∗ is the largest solution to the 
first order condition, f ′(n) = c. By the implicit function theorem, we have

∂n∗

∂M
= −fnM(n∗)

fnn(n∗)
.

Since n∗ is greater than the inflection point defined in Proposition 2, fnn(n
∗) < 0, and the 

comparative statics for M is described by the sign of fnM(n∗).
In the proof of Proposition 2, we derived the marginal product,

f ′(n) = 1

2n2 ·
√

θn

s
· φ

(
M/s√

θn

)
· σ 2 · θn.

Taking the derivative with respect to M , we obtain

fnM(n) = f ′(n) · −M

s2θn

.

Since f ′(n) is always positive, we conclude that for any n, fnM(n) > 0 if and only if M < 0.
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4.
∂n∗

∂s
> 0 if |M| > s

> 0 if |M| < s and f ′(ñ) > c

< 0 if |M| < s and f ′(ñ) < c,

where

ñ =
σ 2

(
3m2 + 2 + √

m4 + 20m2 + 4
)

2s2
(
1 − m2

) .

Proposition 3 shows that the optimal experimental scale n∗ is the largest solution to the 
first order condition, f ′(n) = c. By the implicit function theorem, we have

∂n∗

∂s
= −fns(n

∗)
fnn(n∗)

.

Since n∗ is greater than the inflection point defined in Proposition 2, fnn(n
∗) < 0 and the 

comparative statics of s is described by the sign of fns(n
∗).

In the proof of Proposition 2, we derived the marginal product,

f ′(n) = 1

2n2 ·
√

θn

s
· φ

(
M/s√

θn

)
· σ 2 · θn.

Taking the derivative with respect to s, we obtain

fns(n) = f ′(n) · M2(2 − θn) + s2θn(2 − 3θn)

s3θn

.

The sign of fns(n) is the same as the sign of the following quadratic polynomial over θn:

Q(θn) ≡ − 3s2θ2
n + (2s2 − M2)θn + 2M2,

which has two roots θ̃1 < θ̃2,

θ̃1 = 2s2 − M2 − √
M4 + 20M2s2 + 4s4

6s2 and

θ̃2 = 2s2 − M2 + √
M4 + 20M2s2 + 4s4

6s2 ,

It must be that θ̃1 < 0, since 2s2 − M2 = √
M4 − 4M2s2 + 4s4 <

√
M4 + 20M2s2 + 4s4, 

and since Q(θ) is a quadratic polynomial with a negative principle coefficient, Q(θ) > 0 if 
and only if θ ∈ (θ̃1, θ̃2).

Recall that θn = s2/(s2 + σ 2/n) for n > 0 and θ0 = 0, so θn ∈ [0, 1). Therefore, the sign 
of Q(θn) will depend on whether θn is greater than or less than θ̃2.

If M2 > s2, then θ̃2 > 1. In this case, Q(θn) > 0 for all n since θn ∈ [0, 1) ⊆ (θ̃1, θ̃2). This 
implies that fns(n) > 0 if M2 > s2, which proves the first part of this comparative statics 
result, since dn∗/ds and fns(n) > 0 share the same sign.

If M2 < s2, then θ̃2 < 1. This implies that for any θ ∈ [0, θ̃2), we have Q(θ) > 0, and for 
any θ ∈ (θ̃2, 1), we have Q(θ) < 0. Since θn = s2/(s2 + σ 2/n) is an increasing function over 
n that takes n ∈ [0, ∞) into θn ∈ [0, 1), there exists a ñ such that θñ = θ̃2. Solving for ñ shows 
that
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ñ =
σ 2

(
3m2 + 2 + √

m4 + 20m2 + 4
)

2s2
(
1 − m2

) , where m = M

s
.

Finally, note that n∗ solves the first order condition f ′(n) = c, and is in the decreasing region 
of f ′(n) by Proposition 2. Therefore, when f ′(ñ) > c, n∗ < ñ, which implies that θn∗ < θñ =
θ̃2 and Q(θn∗) > 0. And conversely, when f ′(ñ) < c, n∗ > ñ, which implies that θn∗ > θñ =
θ̃2 and Q(θn∗) < 0. This shows the remaining parts of this comparative statics result, since 
dn∗/ds and Q(θn∗) share the same sign when |M| < s. �

A.5. Proof of Proposition 5

This proof uses the game-theoretic approach described in Section 2.2 of Stoye (2009) to solve 
the minimax regret problem. Define the firm’s average regret with respect to prior distribution G
as

r(n,S,G) ≡
∫

R(n,S, δ) dG(δ).

Let G be the set of integrable distributions in R. Consider the strategy (n∗, S∗) that solves the 
problem

inf
n≥0,S

sup
G∈G

r(n,S,G). (8)

Algebra shows that the strategy (n∗, S∗) that solves (8) is equivalent to the strategy that solves

inf
n≥0,S

sup
δ∈R

R(n,S, δ).

To verify that Ŝ = 1{δ̂ > 0} is an optimal implementation strategy under minimax regret for a 
given sample size n > 0, we consider the following three steps. First, we find a least favorable 
prior distribution Ĝ for the firm’s decision rule, Ĝ ∈ arg supG∈G r(n, Ŝ, G). Second, we find the 
optimal (Bayesian) implementation strategy S

Ĝ
for the least favorable prior Ĝ, which implies 

that r(n, S, Ĝ) ≥ r(n, S
Ĝ
, Ĝ) for any S. Third, we verify that r(n, Ŝ, Ĝ) = r(n, S

Ĝ
, Ĝ).

Then, we conclude that Ŝ is a minimax regret strategy since

sup
G∈G

r(n,S,G) ≥ r(n,S, Ĝ) ≥ r(n,S
Ĝ
, Ĝ) = r(n, Ŝ, Ĝ) = sup

G∈G
r(n, Ŝ,G) ,

where the first inequality follows by definition, the second inequality by second step, the third 
equality by third step, and the last equality by the first step.

In what follows we verify the three steps mentioned above.
Step 1: Consider the prior Ĝ with probability mass function

ĝ(δ) =

⎧⎪⎪⎨⎪⎪⎩
1
2 if δ = −k · σ√

n
1
2 if δ = k · σ√

n

0 otherwise,

where k is the unique value that maximizes maxx>0 x · 	(−x). Under this prior, the firm’s aver-
age regret r(n, Ŝ, Ĝ) is equal to (σ/

√
n) · k · 	(−k) + cn.

Now, we verify that Ĝ is a least favorable prior for the decision rule Ŝ. Note that for δ > 0, 
the firm’s regret is
20
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R(n, Ŝ, δ) = δ · 	
( −δ

σ/
√

n

)
+ cn ≤ σ√

n
max
x>0

x · 	(−x) + cn.

And for δ ≤ 0, the firm’s regret is

R(n, Ŝ, δ) = −δ · 	
(

δ

σ/
√

n

)
+ cn ≤ σ√

n
max
x>0

x · 	(−x) + cn.

Thus, we conclude that

r(n, Ŝ,G) =
∫

R(n,S, δ) dG(δ) ≤ σ√
n

max
x>0

x · 	(−x) + cn = r(n, Ŝ, Ĝ).

Step 2: Before computing the optimal (Bayesian) implementation strategy, note that it is 
equivalent to find an implementation strategy that maximize firm’s expected profits,

S
Ĝ

∈ arg max
S

r(n,S,G) ⇐⇒ S
Ĝ

∈ arg max
S

E[�S] − cn.

The firm implements the idea if and only if the posterior mean quality is positive. When the prior 
is Ĝ, using equation (A.2) in Azevedo et al. (2020), the firm implements the idea if and only if

∞∫
−∞

δ · φ(δ̂ | δ, σ 2/n) · ĝ(δ)dδ ≥ 0

⇐⇒ 1

2
k

σ√
n

{
φ

(
δ̂

∣∣∣∣∣ k
σ√
n
,
σ 2

n

)
− φ

(
δ̂

∣∣∣∣∣ − k
σ√
n
,
σ 2

n

)}
≥ 0.

Since k > 0, the inequality above is equivalent to

φ

(
δ̂

∣∣∣ k
σ√
n
,
σ 2

n

)
≥ φ

(
δ̂

∣∣∣ − k
σ√
n
,
σ 2

n

)

⇐⇒ −
(
δ̂ − kσ/

√
n
)2

2σ 2/n
≥ −

(
δ̂ + kσ/

√
n
)2

2σ 2/n

⇐⇒ kδ̂ ≥ −kδ̂.

Since k > 0, the posterior mean is positive if and only if δ̂ is positive. Therefore,

S
Ĝ

= 1{δ̂ > 0}.
Step 3: Since S

Ĝ
= Ŝ, it follows that r(n, Ŝ, Ĝ) = r(n, S

Ĝ
, Ĝ).

This completes the verification of the three steps in our proof.

A.6. Proof of Proposition 6

First, note that for δ > 0, the firm’s regret is

R(n,Sτ , δ) = δ · 	
(

τ − δ

σ/
√

n

)
+ cn ≤ σ√

n
max
x>0

x · 	(τ − x) + cn.

And for δ ≤ 0, the firm’s regret is

R(n,Sτ , δ) = −δ · 	
(

−τ − −δ√
)

+ cn ≤ σ√ maxx · 	(−τ − x) + cn.

σ/ n n x>0
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This implies that R(n, Sτ , δ) ≤ (σ/
√

n)b(τ) +cn if δ > 0 and R(n, Sτ , δ) ≤ (σ/
√

n)b(−τ) +cn

if δ ≤ 0, where

b(τ) = max
x

x	(τ − x).

Then, combining these two expressions, we conclude R(n, Sτ , δ) ≤ (σ/
√

n)b(|τ |) + cn since 
b(|τ |) = max{b(τ), b(−τ)}. Finally, note that for any τ , there exists x(τ) ∈ arg maxx x ·	(τ −x). 
Define δ∗(τ ) = (σ/

√
n)x∗(τ ) where x∗(τ ) = x(τ) if b(τ) > b(−τ) and x∗(τ ) = x(−τ) if b(τ) ≥

b(−τ). Since R(n, Sτ , δ∗(τ )) = (σ/
√

n)b(|τ |) + cn, we conclude that the firm’s cost function is 
equal to the maximum regret: f̃τ (n) = R(n, Sτ , δ∗(τ )) = (σ/

√
n)b(|τ |) + cn.

A.7. Proof of Proposition 7

By Proposition 6, the cost function is a strictly convex function since b(|τ |) > 0 for any τ . 
Then, the first order conditions characterize the minimax regret optimal experimentation strategy 
of the firm. Since

f̃ ′
τ (n) = −σ

2
n−3/2b(|τ |) + c.

It follows that nmmr
τ = (σb(|τ |)/(2c))2/3.
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