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Abstract
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1 Introduction

There has been a revolution in the use of randomized experiments in the last twenty

years across a number of fields. One prominent example is that of large internet

companies, which routinely use experiments with tens of millions of users to test

almost all of their product innovations. Technology companies like Google, Facebook,

and Microsoft call these experiments “A/B Tests”. A/B tests have revolutionized how

these and other companies screen product innovations.

We propose practical tools and formulae for determining the sample size of exper-

iments that are used to screen innovations, and offer concrete recommendations to

decide which product innovations are worthy of being adopted based on the out-

come of a randomized experiment. Our formulae—which assume that companies use

randomized experiments to help them maximize expected profits—provide a simple

alternative to i) the standard rules-of-thumb of power calculations for determining

the sample size of an experiment, and also to ii) ad hoc thresholds based on statistical

significance to interpret the outcome of an experiment.

We build upon the “A/B testing problem” proposed in Azevedo et al. (2020). In

their model, a firm has a set of potential ideas of unknown quality, and can perform

experiments to learn about each idea, subject to some limitations. The goal is to

maximize the expected sum of quality of implemented ideas.1 Relative to this pre-

vious work, our key contribution is to solve the A/B testing problem for the specific

case in which the distribution of idea quality is Gaussian. For clarity, we also focus

exclusively on the case of a single idea and experimental cost linear in the size of the

experiment. This allows us to provide exact results about the optimal implementation

1For example, if the firm runs a search engine, the ideas are potential improvements developed
by engineers, quality is some key performance measure, and the experiments are A/B tests.
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and experimentation strategies.2

The A/B testing problem with Gaussian priors considered in this paper has already

been studied in a prescient early literature in statistical decision theory. Although

the terminology and the context are different, Raiffa and Schlaifer (1961) and other

researchers at the time were interested in the optimal use of scarce experimental

resources long before this became a commonplace problem in the internet industry.

The book by Raiffa and Schlaifer (1961), for example, provides a comprehensive treat-

ment of the “mathematical analysis of decision making when the state of the world

is uncertain but further information about it can be obtained by experimentation”.

Here we generalize some of the known results in this classical statistical decision

theory literature and explain their significance in the empirically relevant context of

experimentation in technology companies.

We present four main results. First, there is a simple closed-form solution to the

firm’s optimal implementation strategy—that is, the firm’s decision of whether to

adopt a product innovation after observing the outcome of a randomized experiment

(proposition 1). According to our result, the firm should calculate the usual t-statistic

based on the estimated quality obtained from the experiment, and implement the idea

only if the t-statistic is above a threshold. The threshold depends on the parameters

of the Gaussian prior and the experimental noise, and can be positive or negative.3 A

practical takeaway is that a profit maximizing firm might find it optimal to implement

some ideas for which there is no evidence of a statistically significant positive effect

on expected profits.

2Azevedo et al. (2020) focus on approximate results without parametric assumptions.
3A negative threshold arises when the prior mean of the idea quality distribution is positive. In

this case, the firm’s optimal estimate of the true idea quality can be positive even when the signal
obtained from the experiment is negative. This happens because the firm’s optimal estimator—the
posterior mean of idea quality—is a convex combination between the signal and the prior.
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Second, there is a closed-form solution to the value obtained from an experiment

(proposition 2). The closed-form solution can be used to show that the value ob-

tained from an experiment as a function of its sample size (assuming the firm uses

the optimal implementation strategy) is nonnegative, bounded from above, strictly

increasing, and, if the prior mean is different from zero, the value is first convex and

then concave. The latter property has two qualitative implications for the determi-

nation of an experiment’s sample size. First, when the prior mean is different from

zero, small randomized experiments have a limited scope (as the marginal value ob-

tained from a small experiment will be close to zero).4 Second, the marginal value of

large experiments is eventually decreasing and close to zero, which means that very

large randomized experiments are unlikely to be optimal. The formula for the value

obtained from an experiment was known in the case where the firm uses an optimal

implementation strategy in Raiffa and Schlaifer (1961). We generalize the result to

the case of an arbitrary threshold implementation strategy and we document the

differences vis-a-vis the optimal production function.

Third, there is a simple characterization of the experiment’s optimal sample size

(proposition 3). A firm that maximizes expected profits can find the optimal sample

size for an experiment by equating its marginal value to its marginal cost. Because

in the A/B testing problem the value obtained from an experiment is first convex

and then concave (as a function of the sample size), there will be typically two

solutions satisfying the first-order conditions for optimality. The optimal sample size

corresponds to the larger of these solutions. It is straightforward to write a simple

computer algorithm that solves the first-order conditions and then selects that largest

solution. Thus, our results give practical and easy-to-implement alternatives to power

4We note, however, that the interval where the value of an experiment is convex becomes smaller
as the prior mean gets closer to zero
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calculations for sample size determination.

Fourth, we derive comparative statics of the firm’s optimal expected profits and

the optimal sample size (proposition 4). One qualitatively interesting result in our

comparative statics is that the relation between the size of an experiment and the

variance of the prior is not monotone. We show that, when the prior mean is (in

absolute value) smaller than the prior variance, a higher prior variance can lead to

smaller or larger experiments.5

By construction, the formulae for the implementation strategy and the experimen-

tation strategy are optimal if and only if the distribution of idea quality is indeed

Gaussian. As a robustness check, we derive similar results for the case of average

regret minimization with an adversarial prior.6 Our results provide similar practical

alternatives to using power calculations for determining an experiment’s sample size

and to basing implementation decisions on statistical significance, although there are

some important qualitative differences relative to model with a Gaussian prior. For

instance, it is optimal to implement a product innovation whenever its t-statistic is

positive. Also, in this adversarial setting it is never optimal not to experiment. Our

results generalize results from the statistical decision theory literature in Bross (1950)

and Somerville (1954). One advantage of the regret minimization approach is that it

can be applied to setting with little data from prior experiments, where estimating a

reasonable prior is difficult.

From the firm’s perspective, the principle of determining an experiment’s sample size

by maximizing profits seems more appealing than the standard and prevalent practice

of using power calculations for sample size determination.7 This point echoes the cri-

5In Section 3, we provide more details explaining the intuition behind this result.
6In Section 4 we explain what regret is, and motivate its use.
7See for example List et al. (2011); Athey and Imbens (2017)
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tiques of Meltzer (2001) and Manski and Tetenov (2016, 2019). The implementation

of the optimal sample size is especially appealing in data-rich environments, such as

experimentation in online firms, where information from past experiments is readily

available and can be used to choose the prior following an empirical Bayes approach

(see the discussion in Azevedo et al. (2019) and the references therein).

The rest of the paper is organized as follows. Section 2 presents the model, section

3 the results, section 4 the minimax regret case, and section 5 a numerical example.

Section 6 concludes. Proofs are in the appendix.

2 Model

2.1 The Model

A firm has a single innovation, or idea. The firm is uncertain about the quality of the

idea. The true quality of the idea is a normally distributed random variable ∆ with

mean M in R and variance s2. The firm can perform an experiment (also known

as an A/B test) to observe a noisy signal of quality. An experiment with n users

gives a normally distributed signal ∆̂, where the mean is equal to the (unknown)

true quality, and the variance σ2/n is known. The firm incurs a cost c per user in

the experiment.

The firm has two choice variables. The firm can choose an experimentation strategy

n in R+, the number of users assigned to the experiment. We also refer to n as how

much data to use. After observing the result of the experiment, the firm can choose

an implementation strategy S equal to 0 or 1 depending on whether the firm wants

to implement the idea. S is a measurable function of the signal realization ∆̂. The
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firm’s payoff is the expected quality of the idea if implemented minus the cost of

experimentation,

Π(n, S) = E[S ·∆]− c · n.

The expectation in the display above is taken jointly over the signal realization and

the idea’s unknown quality. The firm’s goal is to choose the experimentation and

implementation strategy to maximize its payoff.

2.2 Related Literature

This problem is a particular case of the A/B testing problem from Azevedo et al.

(2020). The key restrictions are the Gaussian prior, single idea, and linear cost. The

restrictions let us focus on additional insights from the Gaussian case. This is also

a particular case of what Raiffa and Schlaifer (1961) section 5.5 call a two-action

problem with a scalar state, linear payoffs, and a Gaussian prior.

Some results below are known from prior work. We include known results for clarity

and credit prior work in detail along with each result. Notably, the formulas for

the production function are known for the case of an optimal implementation strat-

egy. Propositions (2) and (6) generalize the known formulas to arbitrary threshold

implementation strategies.

2.3 Notation

We denote the following pieces of notation. First, we denote the realization of the

random variable ∆ as δ and the realization of ∆̂ as δ̂. Next, we denote the normalized

mean as m := M/s and the share of the variance of the signal explained by the prior

as θn := s2/(s2 + σ2/n) for n > 0 and θ0 := 0.
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Finally, we denote the posterior mean of quality after an experiment of sample size

n with result δ̂ as

P (δ̂, n) := E[∆|∆̂ = δ̂].

3 Results

3.1 Optimal Implementation Strategy

A standard formula for Bayesian updating with a Gaussian prior is that the posterior

mean is an average of the signal δ̂ and the prior mean M :

P (δ̂, n) = θnδ̂ + (1− θn)M .

Moreover, it is optimal for the firm to implement an idea iff the posterior mean

is positive. This implies that the optimal implementation strategy is the following

threshold rule.

Proposition 1 (Optimal Implementation Strategy). It is optimal to implement an

idea iff the signal δ̂ is greater than t∗n · σ/
√
n, where we refer to t∗n as the threshold

t-statistic

t∗n := −m · σ/
√
n

s
.

The firm should calculate the standard frequentist t-statistic of quality associated

with the experiment—i.e., ∆̂/(σ/
√
n)— and implement the idea only if the t-statistic

is above the threshold t∗n. The threshold t-statistic tells the firm how strict it should

be in implementing the idea. If t∗n happens to be equal to 1.65 (the 95th percentile
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of the Gaussian distribution), then the optimal implementation strategy corresponds

to the commonly used rule of thumb of a statistically significant positive effect with

a 5% p-value. The formula makes clear that there is no reason for the rule of thumb

to be optimal. The threshold p-value—which we define as the probability that a

standard normal exceeds t∗n—could be much greater if, for example, the prior about

idea quality has mean close to zero, or if the experiment is very precise relative to

s. And the threshold p-value could be much smaller if, for example, the prior mean

idea quality is sufficiently larger than 0.

A practical takeaway is that, in the case of positive prior mean, it is optimal to

implement ideas even if there is no statistically significant evidence that the idea

works. For example, DellaVigna and Linos (2022) study experiments performed by

nudge units in the US government. They find that the average nudge has a positive

effect. Assuming a Gaussian prior, the optimal strategy is to implement ideas by

default, and only stick to the status quo if an experiment reveals bad news. The

optimal strategy is strikingly different from the standard practice to implement only

ideas for which the experiment reveals good news with a t-statistic above 1.65.

Another practical takeaway is that the optimal implementation strategy can be quite

aggressive, even in the case of a negative prior mean. For example, consider the

case where the absolute value of the prior mean is smaller than s. Then, as long

as the variance of experimental noise is smaller than the variance of the prior, the

optimal threshold t-statistic is below one. This is considerably more aggressive than

the standard practice of 1.65.
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3.2 Optimal Experimentation Strategy

The optimal experimentation strategy depends on the value of allocating n users to

the experiment. Azevedo et al. (2020) term this the production function. We extend

their original definition to allow for cases in which the firm uses a decision rule that

implements an idea whenever the t-statistic is above an arbitrary threshold τ . That

is, we define the production function fτ (n) as

fτ (n) := E
[
∆ · 1{∆̂≥τ ·σ/√n}

]
−M+.

Denote the optimal production function as f(n) := ft∗n(n), where tn is the optimal

implementation threshold in Proposition 1.

Under a Gaussian prior, there is a closed-form solution for the production function.

Our formula generalizes known results on the production function for an optimal

implementation strategy to an arbitrary threshold strategy.8

Proposition 2 (Production Function). The production function is

fτ (n) =


s
{√

θnφ
(
m
√
θn − τ

√
1− θn

)
+mΦ

(
m
√
θn − τ

√
1− θn

)}
, if m < 0

s
{√

θnφ
(
m
√
θn − τ

√
1− θn

)
−mΦ

(
−m
√
θn + τ

√
1− θn

)}
, if m ≥ 0

(1)

8This formula is known in the literature for the case where τ is the optimal threshold t∗n. The
earliest reference we could find is Grundy et al. (1956) equation (4), under a slightly different setup.
The formula also appears in Raiffa and Schlaifer (1961). The formula is related but different from
other formulas in the value of information literature. Keppo et al. (2008) derive a closed-form
solution for the value of information in the case of two possible states, two possible actions, and
normally distributed signals. Moscarini and Smith (2002) derive an asymptotic formula for the
value of information with a finite number of signals and actions.
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Figure 1: The production function fτ (n).
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Notes: The parameters are prior mean M = −5, prior standard deviation s = 5, experi-

mental noise σ = 30, and threshold τ = 1.65.

for n > 0. In addition, the optimal production function is

f(n) = s

{√
θnφ

(
m√
θn

)
− |m|Φ

(
−|m|√
θn

)}
.

Both production functions are bounded and increasing. In addition, when m 6= 0,

the production functions, fτ (n) and f(n), and their the marginal product, f ′τ (n) and

f ′(n), satisfy:

1. limn→0 fτ (n) = −s|m|Φ(|m|τ/m) < 0 and limn→0 f(n) = 0,

2. limn→0 f
′
τ (n) = +∞ and limn→0 f

′(n) = 0,

3. limn→∞ f
′
τ (n) = 0 and limn→∞ f

′(n) = 0

Furthermore, there exists a threshold n̂ such that the optimal production function is

convex on the interval [0, n̂] and concave on the interval [n̂,∞].
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Figure 2: The optimal production function f(n).
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Notes: The parameters are prior mean M = −5, prior standard deviation s = 5, and

experimental noise σ = 30.

Figure 1 and 2 present examples of production functions for a threshold τ = 1.65

and optimal threshold τ = t∗n. The production function fτ is negative and concave

near zero, while the optimal production function f is positive and convex near zero

(as long as M 6= 0). For large values of n, both production functions are eventually

concave.

For a given production function fτ (n), the optimal experimentation strategy is simple.

When the cost of obtaining information always exceeds the value of information—i.e.,

c · n > fτ (n) for all n > 0—it is optimal not to experiment at all and set n∗τ = 0.

When the value of information exceeds the cost of obtaining information for some

n, the optimal sample size equates the marginal cost and marginal product. The

same principle holds for the optimal experimentation strategy n∗ for the optimal

production function f(n) = ft∗n(n).

Proposition 3 (Optimal Experimentation Strategy). Consider a firm that imple-

ments any idea for which the t-statistic is above a threshold τ . Assume that fτ (n) >
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c · n for some n > 0. The optimal experimentation strategy n∗τ solves the first order

condition

f ′τ (n) = c.

In addition, if f(n) > c · n for some n > 0. The optimal experimentation strategy n∗

solves the first order condition

f ′(n) = c.

Proposition 3 gives a practical method to determine the optimal sample size, espe-

cially in the case where data on previous experiments is available. Data on previous

experiments can be used to estimate the parameters of the Gaussian prior. Proposi-

tion 2 then gives a formula for the marginal product.9 The optimal sample size can

then be determined as a function of the marginal cost of data. This is similar to the

empirical Bayes method used in Azevedo et al. (2020). However, the Gaussian case

is simpler for two reasons. First, estimation of the parameters is simpler because it

only depends on estimating the mean and variance of the idea distribution. Second,

the formula for the production function is simpler. In particular, the formula can be

implemented using standard spreadsheet software, much like a power calculation.

Our practical method differs from the standard rule of thumb of power calculations.

For example, in medical trials, one typically specifies a “minimum medically effective”

treatment effect. The experiment size is then chosen to guarantee a power of 0.8

at this treatment size. Similar procedures are often used by researchers and by

companies performing A/B tests.

This standard power calculation approach has been criticized because it has no reason

to be optimal, or even close to optimal (Manski and Tetenov, 2016, 2019). Proposition

9See Equation 5 in Appendix for an exact formula.

13



3 makes clear that power calculations are not optimal in a practical setting that is

well-approximated by our assumptions. In particular, the optimal experimental size

does not depend on an arbitrary “minimum medically effective” effect size, or on an

arbitrary power level. Instead, the optimal experimental size depends on the marginal

cost of data c, on the experimental noise σ, and on the parameters M and s of the

prior.

Next, we present comparative statics for the optimal production function f(n) and

its optimal experimental size n∗.

Proposition 4 (Comparative Statics). Suppose that the conditions of Proposition

3 hold. Then, the comparative statics for the production function f(n) and optimal

experimental size n∗ are:

1.
∂f

∂M
> 0 iff M < 0

2.
∂f

∂s
> 0

3.
∂n∗

∂M
> 0 iff M < 0

4.
∂n∗

∂s
> 0 if |M | > s

> 0 if |M | < s and f ′(ñ) > c

< 0 if |M | < s and f ′(ñ) < c,

where

ñ =
σ2
(
3m2 + 2 +

√
m4 + 20m2 + 4

)
2s2 (1−m2)

.

The practical takeaways of the comparative statics are qualitative guidelines for ex-

perimental design. (1) and (2) say that the level of the production function is higher

when either the mean is close to zero or prior variance is high. This is useful for
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determining whether to incur a fixed cost to set up an experimental infrastructure.

For example, if innovations are very likely to be useful (large positive M and small s)

then there is little point for a firm to set up an experimentation platform. It would be

better to simply implement all ideas without experimenting and save on fixed costs.

Comparative statics (3) and (4) are about the optimal sample size of an experiment.

(3) says that experiments should be larger when the prior mean is close to zero.

The practical takeaway is similar to comparative statics (1). When the mean is far

from zero, it is better to do smaller experiments. Comparative statics (4) is about

how scale depends on the variance of the prior. Interestingly, the relationship is not

monotone. The only relatively clear case is when |M | > s, so that most of the mass

of the prior is on the same side of 0. In that case, a higher prior variance leads to

larger experiments. This is an apparent contradiction with the finding in Azevedo

et al. (2020) that fatter-tailed priors lead to small optimal experiment sizes. The

results do not mathematically contradict each other because our result is about the

variance of a Gaussian prior, whereas the Azevedo et al. (2020) result is about the

thickness of the tail of the prior. Nevertheless, comparative statics (4) shows that it

is not possible to conclude that a more spread out prior always leads to smaller (or

larger) experiments.

The intuition behind these comparative statics is as follows. (1) is true because a

smaller value of |M | (ideas that are closer to being marginal ex-ante) pushes towards

both a higher value of experimentation f(n) and a greater marginal value f ′(n).

The higher marginal value of data in turn implies the comparative statics (3) for n∗,

because n∗ is the greater root of f ′(n) = c, at a point where f ′(n) is decreasing in n.

Comparative statics (2) holds because more uncertainty about quality increases the

value of experimentation.
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The most subtle result is comparative statics (4). The key point is a rescaling ar-

gument. If we multiply the parameters M , s, and σ by a constant, the problem is

unchanged, so the production function is multiplied by the constant. Abusing nota-

tion and denoting the production function as a function of n and the parameters, we

have

f(n|M, s, σ) = s · f(n|M/s, 1, σ/s).

That is, the production function for any given parameters equals the production

function for a normalized prior with s = 1 and M and σ scaled down by a factor of

s. We show this formally in the proof for Proposition 4.

Consider now the effect of increasing s on f ′(n|M, s, σ), which equals s·f ′(n|M/s, 1, σ/s).

There are three effects: s increases, M/s decreases, and σ/s decreases. Increasing s

always increases f ′, which pushes towards greater n∗. However, the effect of decreas-

ing σ/s can decrease f ′. For example, in the case of large n, decreasing σ/s moves

into the range where information is almost perfect, so that the marginal value f ′ is

small.10 This effect may dominate, which is why the sign of the comparative statics

depends on the parameters as described in the proposition.

4 The minimax regret case

4.1 Model

Our analysis in the previous sections relied on the choice of a specific prior distribution

for idea quality. This means that our formulae for the implementation strategy and

10The simplest intuition comes from the large n approximation to the production function from
Azevedo et al. (2020) Theorem 1. The marginal product for large n is approximately proportional
to (σ/s)2, which is decreasing in s.
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the experimentation strategy are optimal if and only if the distribution of idea quality

is indeed Gaussian.

One possible alternative to maximizing expected profits for a fixed prior is to optimize

the worst-case expected profit that could be attained under a large class of possible

priors. For instance, one could consider all possible Gaussian priors with parameters

(M, s). Unfortunately, the results of this exercise turn out to be quite anticlimactic.

If M is a very large negative constant, Proposition 1 implies that an extremely large

value of δ̂ is needed to implement an idea. This implies that the production function

is close to zero for any n, which makes the value of experimentation to be close to

zero.

The pessimistic nature of minimax approaches is a well-understood phenomenon.

Savage (1951) has suggested the use of regret as a target criterion (instead of utility

or profits). In our problem, when the quality of the innovation is δ, the firm’s expected

payoff from the strategy (n, S) is

u(n, S; δ) = δ E[S|∆ = δ]− cn,

where the expectation is taken over the experimental noise, n ≥ 0 is the size of

the experiment, and S ∈ {0, 1} is the implementation strategy that depends on the

result of the experiment, ∆̂. Define the regret of the strategy (n, S) as the difference

between the optimal expected payoff if δ were observable, minus the expected payoff

from choosing (n, S). Regret thus becomes

R(n, S, δ) = δ · 1{δ>0} − u(n, S; δ). (2)
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Define the firm’s average regret with respect to prior distribution G as

r(n, S,G) ≡
∫
R(n, S, δ) dG(δ).

Let G be the set of integrable distributions in R. Consider the strategy (n∗, S∗) that

solves the problem

inf
n≥0,S

sup
G∈G

r(n, S,G). (3)

Algebra shows that the strategy (n∗, S∗) that solves (3) is equivalent to the strategy

that solves

inf
n≥0,S

sup
δ∈R

R(n, S, δ). (4)

The strategies that minimize the worst-case regret are usually referred to as minimax

regret strategies. These strategies have been proposed by Savage (1951) as a guideline

for making decisions under uncertainty. Minimax regret is one of the most prominent

alternatives in the statistics literature on how to make implementation and experi-

ment design decisions (see Manski (2019)). In what follows, we write (n∗MMR, S
∗
MMR)

instead of (n∗, S∗) to emphasize that the strategies that minimize average regret

against a worst-case prior are minimax regret strategies.

4.2 Results

It is well known that the minimax regret implementation decision is to implement

the idea if and only if the signal is positive. That is,

Proposition 5 (Minimax Regret Optimal Implementation Strategy). It is optimal

to implement an idea iff the signal δ̂ is positive.

This strategy is what Manski (2004) calls the empirical success rule. A practical
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takeaway for this rule is that, from a minimax regret perspective, there is no reason

to have a status quo bias. As a concrete example, consider a firm choosing between

a standard marketing email and a new marketing email. The firm has little prior

information and decides instead to use the minimax regret criterion. If switching

to the new marketing email is costless, then it makes sense to switch as long as the

experimental point estimate is positive. This is in contrast to the standard practice,

for example in internet firms and in the nudge units studied in DellaVigna and Linos

(2022), of implementing only ideas with statistically significant positive results, even

when implementation costs are trivial.

Let Sτ be a decision rule with a threshold t-statistic of τ . Define the cost function

f̃τ (n) as the firm’s maximum average regret with threshold strategy Sτ and sample

size n:

f̃τ (n) = sup
G∈G

r(n, Sτ , G).

Let f̃(n) := f̃0(n) be the optimal cost function with the optimal implementation

strategy from Proposition 5.

The next proposition shows that the minimax regret production function has a simple

formula.

Proposition 6 (Minimax Regret Cost Function). The cost function is

f̃τ (n) =
σ√
n
b(|τ |) + cn,

for n > 0, and f̃τ (0) = 0. The function b is defined by

b(τ) = max
x

xΦ(τ − x).
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Bross (1950) and Somerville (1954) studied the minimax regret strategy for a problem

closely related to ours. The production function for the optimal threshold τ = 0 is

derived in their work.

As in the Gaussian case, the closed-form solution to the cost function gives a simple

method to determine the optimal experimentation strategy:

Proposition 7 (Minimax Regret Optimal Experimentation Strategy). Consider a

firm with a decision rule with threshold t-statistic of τ and minimax regret objective.

The optimal experimentation strategy solves the first order condition

f̃ ′τ (n) = c.

That is,

nmmrτ =

{
σb(|τ |)

2c

}2/3

.

The optimal experiment size is strictly positive.

These propositions offer a practical alternative to power calculations for choosing an

experimentation strategy. Practical implementation is even simpler than the Gaus-

sian case because it requires no information on the prior. The optimal strategy

depends only on the variable cost of experimentation and on the experimental noise.

So this is a practical method even in cases where there is too little data on prior

experiments to estimate a prior. Moreover, the formulae can be implemented easily,

much like a traditional power calculation.
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5 Illustrative Numerical Example

We now consider an illustrative numerical example. The example shows that, in

plausible settings, our optimal experimentation strategy can perform considerably

better than the standard rule-of-thumbs of power calculations and statistical signif-

icance. We based our setting on typical experiments run by brick-and-mortar firms

with relatively small sample sizes.11

Consider a firm with 1,000 business units. The firm can choose a number n ≤ 1000

of identical business units to include in an experiment to test an innovation with

unknown quality ∆. We define quality as the percent gain in revenue due to the

innovation. The firm has a prior that quality follows a normal distribution with

mean M = −5 and standard deviation s = 5.12 The experiment is noisy due to

variance in revenue from each business unit. We assume that the experimental error

is normal as in Section 2, and we set the parameter σ to 30.

We consider several specifications for the marginal cost c of experimentation. We

set c so that the total cost of running an experiment with all 1,000 business units,

1000c, is between 5% of revenue and 0.1% of revenue.13 Thus, we consider a range

of costs spanning relatively high-cost experimentation and relatively low-cost exper-

imentation. The production function for this example is illustrated in Figure 2.

Table 1 displays the optimal experimentation and implementation strategies under

these different costs. In the highest-cost scenario, it is never optimal to implement

the idea. When the cost of experimenting on all 1,000 business units is 1% of revenue,

the optimal sample size is about 100 business units. As costs decrease, the optimal

11See Pierce et al. (2021) for an example.
12In practice the prior distribution might have been estimated from data on previous experiments.

See Azevedo et al. (2019).
13Consequently, c is between .1/1000 and 5/1000.
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sample size increases; in the lowest-cost scenario, the optimal sample size is about 430

business units. The optimal implementation strategy is to accept the innovation if the

experiment’s t-statistic exceeds a small, positive threshold. Profits, when positive,

range from 0.16% of revenue to 0.33% of revenue, when the size of the experiment is

chosen optimally. This is a significant number. A firm that runs ten experiments in

a year would then have an expected revenue gain between 1.6% and 3.3% of revenue.

We compare our optimal implementation and experimentation strategy with the stan-

dard rule-of-thumb. The standard rule-of-thumb implementation strategy is to imple-

ment an idea if and only if it is statistically significant at the 5% level in a one-sided

t-test. This means that an idea is implemented if the experiment’s t-statistic is larger

than t0.95 = 1.645, which is considerably more strict than our threshold t∗n. Table 1

reports that the t∗n in our numerical example is small and positive, ranging from 0.57

to 0.29. Compared to our implementation strategy, the rule-of-thumb will reject a

profitable innovation more frequently.

The standard rule-of-thumb experimentation strategy is to select sample size based

on a power calculation. In a power calculation, the experimenter starts from a “min-

imum significant effect size”. The experiment size is then chosen to guarantee some

minimum power if the effect is greater than the minimum significant effect size, in a

one-sided 5% t-test. We calculated the power calculation sample size with a required

power of 80% and minimum significant effect size of a 2.5% gain in revenue. This

yielded a sample of about 890.

Table 1 compares profits under the optimal strategy with profits under the standard

rules of thumb. When the experimental cost is large, the power calculation performs

poorly, and profits under a power calculation are negative. The reason is that, in

this case, the optimal sample size is relatively small, whereas the power calculation
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Table 1: Numerical comparison of Bayesian optimal strategy, standard power calcu-
lation rule of thumb, and minimax regret strategy.

Cost of an experiment of size 1,000 5 1 0.5 0.1

n̂: lower-bound of n∗ (Proposition 2) 18 18 18 18

t∗n: optimal implementation strategy - 0.572 0.458 0.289

n∗: optimal experimentation strategy 0 110 172 430

profits under t∗ & n∗ 0% 0.16% 0.23% 0.33%

t1−α: rule of thumb threshold t-statistic 1.645 1.645 1.645 1.645

n∗pc : rule of thumb sample size 890 890 890 890

profits under t1−α & n∗pc -4.097% -0.535% -0.09% 0.266%

profits under t∗ & n∗pc -4.06% -0.5% -0.05% 0.3%

tMMR: minimax regret threshold t-statistic 0 0 0 0

n∗MMR: minimax regret sample size 64 187 296 866

profits under tMMR & n∗MMR -0.22% 0.11% 0.2% 0.3%

Notes: The numerical example compares the Bayesian optimal strategy, the minimax regret

strategy, and the power calculation for selecting sample size. Profits are measured in terms

of fraction of gains in revenue. The parameters are prior mean M = −5, prior standard

deviation s = 5, experimental noise σ = 30, and statistical significance level α = 5%.

The implementation strategy is S = 1{t̂ > T}, where t̂ is the experiment’s t-statistic and

T is either the optimal threshold t∗n (Proposition 1) or the p-value threshold t1−α (the

(1−α)th percentile of a standard normal distribution). Denote by n the sample size of the

experiment. Profits are E[S ·∆]− cn.
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suggests running a large and costly experiment. On the other hand, under the small-

est experimental cost of 0.1%, the power calculation performs well. When costs are

low, it is optimal to experiment on many business units, and this is what the power

calculation suggests. In this case, profits under a power calculation and the optimal

implementation strategy are only 10% less than optimal.

Finally, the table describes the performance of a minimax regret strategy. We find

that, for our illustrative example, the minimax regret strategy performs considerably

better than the power calculation rule-of-thumb, and profits are relatively close to

optimal. This suggests that, as argued by Manski and Tetenov (2016, 2019), the

minimax regret strategy can be a good candidate for practical applications.

There are two caveats to the illustrative example. First, the fact that a power calcu-

lation suggests a sample size that is too large is an artifact of the example parameters.

In general, the power calculation could give a sample size either above or below the

optimal experiment size. The reason is that the power calculation depends only on

how noisy the experiment is (σ) and on the arbitrarily chosen minimum significant

effect and power level. In contrast, the optimum depends the level of noise σ, as well

as the cost and the prior. Second, throughout this paper we have maintained the

assumption that the only cost of experimentation is the cost of acquiring more data.

In practice, there can be other costs, such as the opportunity cost of resources that

could be used to test other ideas (Azevedo et al., 2020). Numerically, these examples

can look quite different. However, it is still true that the power calculations do not

depend on the same variables as the optimal experimentation strategy. Therefore, the

power calculation may or may not have good performance, much like in the simple

case we consider.
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6 Conclusion

We study the A/B testing problem in the case where the prior distribution of idea

quality is Gaussian. We propose practical tools and formulae for determining the

sample size of experiments that are used to screen innovations, and offer concrete

recommendations to decide which product innovations should be adopted based on

the outcome of a randomized experiment. There is a simple closed-form solution to

the firm’s optimal implementation strategy (proposition 1). There is also a closed-

form solution to the value of information obtained from an experiment (Proposition

2). There is a simple recommendation for deciding the size of a randomized exper-

iment based on equating the marginal value of the experiment to its marginal cost.

3). We also derive qualitative principles for experimentation from comparative stat-

ics (Proposition 4). As a robustness check, we provide similar results for the case of

expected regret minimization for an adversarial prior.

We compare the optimal strategy under the Gaussian prior, the minimax regret strat-

egy, and the standard power calculation for selecting sample size. In an illustrative

example, we demonstrate that these optimal strategies can considerably outperform

the standard rules-of-thumb. The results suggest that, in a setting that fits the as-

sumptions well, the Bayesian optimal strategy and the minimax regret strategy can

improve practical A/B testing.
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A Proofs

A.1 Proof of Proposition 1

Proof. The firm implements the idea if and only if the posterior mean quality is

positive:

P (δ̂, n) = θnδ̂ + (1− θn)M > 0 ⇐⇒ δ̂ > −M · σ
2/n

s2
= t∗n · σ/

√
n

A.2 Proof of Proposition 2

Proof. Denote τn := τ · σ/
√
n. The innovation is implemented if and only if the

signal exceeds τn. Then, the production function equals the expected value of the

innovation times the probability it is implemented. Therefore,

fτ (n) =

∫
δ · P

(
∆̂ ≥ τn|∆ = δ

)
· g(δ)dδ −M+

=

∫
δ · Φ

(
δ − τn
σ/
√
n

)
· g(δ)dδ −M+

=

∫
(δ −M) · Φ

(
δ − τn
σ/
√
n

)
· g(δ)dδ +M

∫
Φ

(
δ − δ∗n
σ/
√
n

)
· g(δ)dδ −M+

The first term can be simplified to s
√
θn · φ

(
(m− τn/s)

√
θn
)

using integration by

parts and setting:

dv = (δ −M) · g(δ)dδ

u = Φ

(
δ − τn
σ/
√
n

)
.
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The second term can be simplified to M · Φ
(

(m− τn/s)
√
θn
)

using the following

identity for the Gaussian distribution:

∫
Φ (a+ bx)φ(x)dx = Φ

(
a√

1 + b2

)
.

Note that (m − τn/s)
√
θn = m

√
θn − τ

√
1− θn. Then, combining gives Equation 1.

The optimal production function follows by substituting τ = t∗n = −mσ/(s
√
n).

The production function is strictly increasing because differentiating Equation 1

shows that:

f ′τ (n) =
s3

2σ2
· (1− θn)2

√
θn

φ
(
m
√
θn − τ

√
1− θn

)(
1 +

(
m
√

1− θn + τ
√
θn

)2
)
, (5)

a function that is positive for all n since θn = s2/(s2 + σ2/n) ∈ (0, 1). Similarly, the

derivative of the optimal production function is:

f ′(n) =
1

2n2
·
√
θn
s
· φ
(

m√
θn

)
· σ2 · θn =

s3

2σ2
· (1− θn)2

√
θn

· φ
(

m√
θn

)
, (6)

a function that is positive for all n. Therefore, the optimal production function is

also strictly increasing.

These production functions are bounded because they are strictly increasing, and

as n → ∞, θn → 1, fτ (n) → s (φ(m)− |m|Φ(−|m|)), and f(n) → s
(
φ(m) − |m| ·

Φ(−|m|)
)
, a finite value.

From an analysis of the second derivative, the production function is concave near

the origin and in the interval [n2,+∞). Differentiating Equation 1 twice shows that:

f ′′τ (n) = −f ′τ (n) ·
(

1 + 3θn
2

+ (m
√
θn − τ

√
1− θn)xn(θn(1− θn))1/2

(
2 + x2

n

1 + x2
n

))
,
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where xn = (m
√

1− θn + τ
√
θn). From Equation 5, f ′τ (n) > 0. Then, the sign of the

second derivative is the opposite of the sign of the following expression

1 + 3θn
2

+ (m
√
θn − τ

√
1− θn)xn(θn(1− θn))1/2

(
2 + x2

n

1 + x2
n

)
,

which is positive for n → 0 and n → ∞, since in those cases θn → 0 and θn → 1,

respectively. Thus, we can conclude that f ′′τ (n) is negative for values of n near zero

and in an interval [n2,∞) for some n2 > 0.

For the optimal production function, we can conclude from an analysis of the second

derivative that the production function is convex, then concave. That is

f ′′(n) = f ′(n) ·
(−4s6n2 + (M2 − s2)σ2s2n+M2σ4

s2θn

)
.

The sign of f ′′(n) depends on −4s6n2 + (M2 − s2)σ2s2n + M2σ4, a second or-

der polynomial over n with a negative principal coefficient. Using the quadratic

formula, the smaller root
σ2
(

(M2−s2)−
√
M4+14M2s2+s4

)
8s4

is negative, since M2 − s2 =
√
M4 − 2M2s2 + s4 <

√
M4 + 14M2s2 + s4. The larger of the two roots is positive

and the inflection point:

n1 :=
σ2
(

(M2 − s2) +
√
M4 + 14M2s2 + s4

)
8s4

. (7)

The production function is convex over [0, n1), and concave over (n1,∞)

Finally, by taking the limits of Equations 5 and 6, we find that limn→0 f
′
τ (n) = +∞,

limn→0 f
′(n) = 0, limn→∞ f

′
τ (n) = 0, and limn→∞ f

′(n) = 0.
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A.3 Proof of Proposition 3

Proof. The optimal experimentation strategy n∗ maximizes fτ (n)−cn for n ≥ 0. The

first order condition is f ′τ (n) = c. Note that, in this case, the threshold t-statistic τ

does not depend on n.

There must be at least one critical point that satisfies the first order condition, since

(1) limn→0 fτ (n)− c · n ≤ 0, since limn→0 fτ (n) is equal to s ·m ·Φ(−τ) if m < 0 and

−s ·m · Φ(τ) if m ≥ 0 from Proposition 2; (2) fτ (n) − c · n > 0 for some n > 0 by

assumption; and (3) fτ (n)− c ·n < 0 for large n, since fτ (n) is bounded, as shown in

Proposition 2, and c ·n is not. Further, from (1) and (2), the solution n∗τ cannot be a

boundary solution and must be a critical point that satisfies the first order condition.

The previous explanation applies for the optimal production function f(n) as well:

(1) is true since limn→0 f(n) = 0, and (2) and (3) follow from the same reasoning.

The optimal experimentation strategy n∗ must be a critical point that satisfies the

first order condition. In this particular case, we can provide additional analysis and

claim that there are either one or two solutions to the first-order condition, and n∗

is the largest solution.

From Proposition 2 and its proof, we know that when M 6= 0, f ′(0) = 0 and

limn→∞ f
′(n) = 0, and that f ′(n) is increasing over (0, n1) and decreasing over

(n1,∞), where n1 is defined in Equation 7. Therefore, the maximum exists and

must satisfy the first order condition.

If there is only one solution to the first order condition, then this must be the optimal

experimentation strategy. Otherwise, there are two solutions to f ′(n) = c, one smaller

than n1 and one larger. In this case, the sign analysis of f ′′(n) from the proof of

Proposition 2 shows that the smaller critical point is a local minimum and the larger
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critical point is a local maximum, and so the larger critical point must be the optimal

experimentation strategy.

When M = 0, limn→0 f
′(n) = ∞ and limn→∞ f

′(n) = 0 by taking the limit of

Equation 6. f ′(n) is strictly decreasing, since n1 = 0 when M = 0. Therefore, f ′(n)

crosses c once and this critical point is a local maximum, and must be the optimal

experimentation strategy.

A.4 Proof of Proposition 4

The comparative statics results with respect to the production function f(n) hold

under a general prior, and we prove these results under a general prior. We prove

the comparative statics results with respect to the optimal sample size n∗ under a

Gaussian prior.

Proof. 1.
∂f

∂M
> 0 iff M < 0

By Lemma A.2 in Azevedo et al. (2020), the production function is

f(n,M, s, σ) = max
δ

∫ +∞

−∞
δ · Φ

( δ − δ
σ/
√
n

)
· 1

s
· h
(δ −M

s

)
dδ −M+.

By the envelope theorem, we have

fM(n,M, s, σ) =

∫
δ · Φ

(δ − δ∗n
σ/
√
n

)
· 1

s
· h′
(δ −M

s

)
· (−1)

s
dδ − 1{M > 0}.

30



Then, we set u = δ · Φ
(
δ−δ∗n
σ/
√
n

)
· 1
s

and v = h
(
δ−M
s

)
, and integrate by parts.

fM(n,M, s, σ) = −
∫
udv − 1{M > 0}

=

∫
vdu− (uv)

∣∣∣+∞
−∞
− 1{M > 0}

=

∫
h
(δ −M

s

)
·
{1

s
Φ
(δ − δ∗n
σ/
√
n

)
+
δ

s
· φ
(δ − δ∗n
σ/
√
n

)
· 1

σ/
√
n

}
dδ − 1{M > 0}

=

∫
h
(δ −M

s

)1

s
Φ
(δ − δ∗n
σ/
√
n

)
dδ − 1{M > 0},

where the last equality holds because of the definition of δ∗n,
∫
δ · φ

(
δ−δ∗n
σ/
√
n

)
·

h
(
δ−M
s

)
dδ = 0.

If M < 0, then fM(n,M, s, σ) > 0 because each term inside of the integrand is

positive. If M > 0, then since Φ(·) ∈ [0, 1] and h(·)/s is a p.d.f., the integral∫
h
(
δ−M
s

)
1
s
Φ
(
δ−δ∗n
σ/
√
n

)
dδ is smaller than 1, and so fM(n,M, s, σ) < 0.

2.
∂f

∂s
> 0

First, we prove that, under a general prior distribution, the production function

is homogeneous of degree one over the prior mean, prior standard deviation,

and experimental noise:

f(n,M, s, σ) = s · f(n,M/s, 1, σ/s). (8)
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Again, by Lemma A.2 from Azevedo et al. (2020), the production function is

f(n,M, s, σ) =

∫
δ · Φ

(
δ − δ∗n
σ/
√
n

)
· 1

s
· h
(
δ −M
s

)
dδ −M+

= s

(∫
(δ/s) · Φ

(
(δ/s)− (δ∗n/s)

(σ/s)/
√
n

)
· h
(

(δ/s)− (M/s)
)
d(δ/s)− (M/s)+

)

= s · f(n,M/s, 1, σ/s).

We have essentially re-scaled the production function, setting the prior standard

deviation to 1. Then, the scaled prior mean is M/s and the scaled experimental

noise is σ/s.

Next, we show that the production function is decreasing over the experimental

noise:

f(n,M, s, σ) > f(n,M, s, σ′).

The formula for the production function shows that σ and n each appear only

once, and it must be that

f(n,M, s, σ) = f(λ2 · n,M, s, λ · σ).

Then, take any σ′ > σ and denote λ := σ′/σ > 1. It follows that f(n,M, s, σ) =

f(λ2 · n,M, s, σ′) > f(n,M, s, σ′), where the inequality is true because the

production function is increasing over n (by Proposition 2).

Finally, we prove the comparative statics result. By equation (8) and the chain

rule, fs(n,M, s, σ) is equal to

f(n,M/s, 1, σ/s) + fM(n,M/s, 1, σ/s) ·
(
−M
s2

)
+ fσ(n,M/s, 1, σ/s) ·

(
−σ
s2

)
.
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The first term is positive since by Proposition 2, the production function is

always positive. The second term is positive since M and fM have opposite

signs (as proven above in the first comparative statics). Finally, the third term

is positive because the production function is decreasing over the experimental

noise.

3.
∂n∗

∂M
> 0 iff M < 0

Proposition 3 shows that the optimal experimental scale n∗ is the largest solu-

tion to the first order condition, f ′(n) = c. By the implicit function theorem,

we have

∂n∗

∂M
= −fnM(n∗)

fnn(n∗)
.

Since n∗ is greater than the inflection point defined in Proposition 2, fnn(n∗) <

0. and the comparative statics for M is described by the sign of fnM(n∗).

In the proof of Proposition 2, we derived the marginal product,

f ′(n) =
1

2n2
·
√
θn
s
· φ
(
M/s√
θn

)
· σ2 · θn.

Taking the derivative with respect to M , we obtain

fnM(n) = f ′(n) · −M
s2θn

.

Since f ′(n) is always positive, we conclude that for any n, fnM(n) > 0 if and

only if M < 0.

4.
∂n∗

∂s
> 0 if |M | > s

> 0 if |M | < s and f ′(ñ) > c
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< 0 if |M | < s and f ′(ñ) < c,

where

ñ =
σ2
(
3m2 + 2 +

√
m4 + 20m2 + 4

)
2s2 (1−m2)

.

Proposition 3 shows that the optimal experimental scale n∗ is the largest solu-

tion to the first order condition, f ′(n) = c. By the implicit function theorem,

we have

∂n∗

∂s
= − fns(n

∗)

fnn(n∗)
.

Since n∗ is greater than the inflection point defined in Proposition 2, fnn(n∗) < 0

and the comparative statics of s is described by the sign of fns(n
∗).

In the proof of Proposition 2, we derived the marginal product,

f ′(n) =
1

2n2
·
√
θn
s
· φ
(
M/s√
θn

)
· σ2 · θn,

Taking the derivative with respect to s, we obtain

fns(n) = f ′(n) · M
2(2− θn) + s2θn(2− 3θn)

s3θn
.

The sign of fns(n) is the same as the sign of the following quadratic polynomial

over θn:

Q(θn) ≡ −3s2θ2
n + (2s2 −M2)θn + 2M2,

which has two roots θ̃1 < θ̃2,

θ̃1 =
2s2 −M2 −

√
M4 + 20M2s2 + 4s4

6s2
and θ̃2 =

2s2 −M2 +
√
M4 + 20M2s2 + 4s4

6s2
,

It must be that θ̃1 < 0, since 2s2−M2 =
√
M4 − 4M2s2 + 4s4 <

√
M4 + 20M2s2 + 4s4,
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and since Q(θ) is a quadratic polynomial with a negative principle coefficient,

Q(θ) > 0 if and only if θ ∈ (θ̃1, θ̃2).

Recall that θn = s2/(s2 + σ2/n) for n > 0 and θ0 = 0, so θn ∈ [0, 1). Therefore,

the sign of Q(θn) will depend on whether θn is greater than or less than θ̃2.

If M2 > s2, then θ̃2 > 1. In this case, Q(θn) > 0 for all n since θn ∈ [0, 1) ⊆

(θ̃1, θ̃2). This implies that fns(n) > 0 if M2 > s2, which proves the first part

of this comparative statics result, since dn∗/ds and fns(n) > 0 share the same

sign.

If M2 < s2, then θ̃2 < 1. This implies that for any θ ∈ [0, θ̃2), we have Q(θ) > 0,

and for any θ ∈ (θ̃2, 1), we have Q(θ) < 0. Since θn = s2/(s2 + σ2/n) is an

increasing function over n that takes n ∈ [0,∞) into θn ∈ [0, 1), there exists a

ñ such that θñ = θ̃2. Solving for ñ shows that

ñ =
σ2
(
3m2 + 2 +

√
m4 + 20m2 + 4

)
2s2 (1−m2)

, where m =
M

s
.

Finally, note that n∗ solves the first order condition f ′(n) = c, and is in the

decreasing region of f ′(n) by Proposition 2. Therefore, when f ′(ñ) > c, n∗ < ñ,

which implies that θn∗ < θñ = θ̃2 and Q(θn∗) > 0. And conversely, when

f ′(ñ) < c, n∗ > ñ, which implies that θn∗ > θñ = θ̃2 and Q(θn∗) < 0. This

shows the remaining parts of this comparative statics result, since dn∗/ds and

Q(θn∗) share the same sign when |M | < s.
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A.5 Proof of Proposition 5

To verify that Ŝ = 1{δ̂ > 0} is an optimal implementaton strategy under mini-

max regret for a given sample size n > 0, we consider the following three steps.

First, we find a least favorable prior distribution Ĝ for the firm’s decision rule,

Ĝ ∈ arg supG∈G r(n, Ŝ, G). Second, we find the optimal (Bayesian) implementation

strategy SĜ for the least favorable prior Ĝ, which implies that r(n, S, Ĝ) ≥ r(n, SĜ, Ĝ)

for any S. Third, we verify that r(n, Ŝ, Ĝ) = r(n, SĜ, Ĝ).

Then, we conclude that Ŝ is a minimax regret strategy since

sup
G∈G

r(n, S,G) ≥ r(n, S, Ĝ) ≥ r(n, SĜ, Ĝ) = r(n, Ŝ, Ĝ) = sup
G∈G

r(n, Ŝ, G) ,

where the first inequality follows by definition, the second inequality by second step,

the third equality by third step, and the last equality by the first step.

In what follows we verify the three steps mentioned above.

Step 1: Consider the prior Ĝ with probability mass function

ĝ(δ) =



1
2

if δ = −k · σ√
n

1
2

if δ = k · σ√
n

0 otherwise,

where k is the unique value that maximizes maxx>0 x · Φ(−x). Under this prior, the

firm’s average regret r(n, Ŝ, Ĝ) is equal to (σ/
√
n) · k · Φ(−k) + cn.

Now, we verify that Ĝ is a least favorable prior for the decision rule Ŝ. Note that for
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δ > 0, the firm’s regret is

R(n, Ŝ, δ) = δ · Φ
(
−δ
σ/
√
n

)
+ cn ≤ σ√

n
max
x>0

x · Φ(−x) + cn.

And for δ ≤ 0, the firm’s regret is

R(n, Ŝ, δ) = −δ · Φ
(

δ

σ/
√
n

)
+ cn ≤ σ√

n
max
x>0

x · Φ(−x) + cn.

Thus, we conclude that

r(n, Ŝ, G) =

∫
R(n, S, δ) dG(δ) ≤ σ√

n
max
x>0

x · Φ(−x) + cn = r(n, Ŝ, Ĝ).

Step 2: Before computing the optimal (Bayesian) implementation strategy, note that

it is equivalent to find an implementation strategy that maximize firm’s expected

profits,

SĜ ∈ arg max
S

r(n, S,G) ⇐⇒ SĜ ∈ arg max
S

E[∆S]− cn.

The firm implements the idea if and only if the posterior mean quality is positive.

When the prior is Ĝ, using equation (A.2) in Azevedo et al. (2020), the firm imple-

ments the idea if and only if

∫ ∞
−∞

δ · φ(δ̂ | δ, σ2/n) · ĝ(δ)dδ ≥ 0

⇐⇒ 1

2
k
σ√
n

{
φ

(
δ̂

∣∣∣∣∣ k σ√
n
,
σ2

n

)
− φ

(
δ̂

∣∣∣∣∣ − k σ√
n
,
σ2

n

)}
≥ 0.
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Since k > 0, the inequality above is equivalent to

φ

(
δ̂
∣∣∣ k σ√

n
,
σ2

n

)
≥ φ

(
δ̂
∣∣∣ − k σ√

n
,
σ2

n

)

⇐⇒ −

(
δ̂ − kσ/

√
n
)2

2σ2/n
≥ −

(
δ̂ + kσ/

√
n
)2

2σ2/n

⇐⇒ kδ̂ ≥ −kδ̂.

Since k > 0, the posterior mean is positive if and only if δ̂ is positive. Therefore,

SĜ = 1{δ̂ > 0}.

Step 3: Since SĜ = Ŝ, it follows that r(n, Ŝ, Ĝ) = r(n, SĜ, Ĝ).

This completes the verification of the three steps in our proof.

A.6 Proof of Proposition 6

First, note that for δ > 0, the firm’s regret is

R(n, Sτ , δ) = δ · Φ
(
τ − δ

σ/
√
n

)
+ cn ≤ σ√

n
max
x>0

x · Φ(τ − x) + cn.

And for δ ≤ 0, the firm’s regret is

R(n, Sτ , δ) = −δ · Φ
(
−τ − −δ

σ/
√
n

)
+ cn ≤ σ√

n
max
x>0

x · Φ(−τ − x) + cn.

This implies thatR(n, Sτ , δ) ≤ (σ/
√
n)b(τ)+cn if δ > 0 andR(n, Sτ , δ) ≤ (σ/

√
n)b(−τ)+

cn if δ ≤ 0, where

b(τ) = max
x

xΦ(τ − x).
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Then, combining these two expressions, we conclude R(n, Sτ , δ) ≤ (σ/
√
n)b(|τ |) + cn

since b(|τ |) = max{b(τ), b(−τ)}. This implies r(n, Sτ , G) ≤ (σ/
√
n)b(|τ |) + cn for

any G ∈ G.

To conclude, note that for any τ , there exists x(τ) ∈ arg maxx x ·Φ(τ − x). Then, we

can define the following prior distribution Ĝτ with probability mass function

ĝτ (δ) =


1 if δ = (σ/

√
n)x∗(τ)

0 otherwise,

where x∗(τ) = x(τ) if b(τ) > b(−τ) and x∗(τ) = x(−τ) if b(τ) ≥ b(−τ). The

prior distribution Ĝτ is a least favorable prior distribution for the firm’s decision rule

since (1) r(n, Sτ , Ĝτ ) = (σ/
√
n)a(τ) + cn and (2) r(n, Sτ , Ĝτ ) = supG∈G r(n, Sτ , G).

Finally, the firm’s cost function is equal to the maximum average regret: f̃τ (n) =

r(n, Sτ , Ĝτ ) = (σ/
√
n)b(|τ |) + cn.

A.7 Proof of Proposition 7

By Proposition 6, the cost function is a strictly convex function since b(|τ |) > 0

for any τ . Then, the first order conditions characterize the minimax regret optimal

experimentation strategy of the firm. Since

f̃ ′τ (n) = −σ
2
n−3/2b(|τ |) + c.

It follows that nmmrτ = (σb(|τ |)/(2c))2/3.
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