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B Additional Results

B.1 Closeness of Bootstrap and Posterior Quantiles

This section establishes the closeness between bootstrap and posterior quantiles
that we assumed in Theorem 2. We verify the high-level assumption of Theorem 2
assuming that the distribution

√
(g(θ∗P )−g(θ̂n)) has a uniformly bounded p.d.f. As

mentioned in Remark 2, this condition does not imply (nor is implied) by directional
differentiability. We start with an intermediate lemma and corollary, then verify the
required quantile closeness in Theorem 3.

Lemma 2. LetW ∗n , Y ∗n be random variables dependent on the data Xn = (X1, X2, . . . , Xn)
inducing the probability measures PnW and PnY respectively. Let A ⊂ Rk and let
Aδ = {y ∈ Rk : ‖x− y‖ < δ for some x ∈ A}. Then,

|PnW (A|Xn)− PnY (A|Xn)| ≤ 1
δ

sup
f∈BL(1)

∣∣E[f(W ∗n)|Xn]− E[f(Y ∗n )|Xn]
∣∣

+ max{PnY (Aδ\A|Xn), PnY ((Ac)δ\Ac|Xn)}

Proof. To show this lemma we use an argument analogous to that in Dudley (2002)
p. 395. Define f(x) ≡ max(0, 1− ‖x−A‖/δ). Then, δf ∈ BL(1) and:
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PnW (A|Xn) =
∫
A
dPnW |Xn

≤
∫
fdPnW |Xn

( since f is nonnegative and f(x) = 1 over A )

=
∫
Aδ
fdPnY |Xn + 1

δ

(∫
Aδ
δfdPnW |Xn −

∫
Aδ
δfdPnY |Xn

)
≤
∫
Aδ
dPnY |Xn + 1

δ
sup

f∈BL(1)

∣∣∣E[f(W ∗n) |Xn]− E[f(Y ∗n ) |Xn]
∣∣∣

= PnY (Aδ|Xn) + 1
δ

sup
f∈BL(1)

∣∣∣E[f(W ∗n) |Xn]− E[f(Y ∗n ) |Xn]
∣∣∣

It follows that:

PnW (A|Xn)−PnY (A|Xn) ≤ 1
δ

∣∣E[f(W ∗n)|Xn]−E[f(Y ∗n )|Xn]
∣∣+(PnY (Aδ|Xn)−PnY (A|Xn))

An analogous argument can be made for Ac. In this case we get:

PnW (Ac|Xn)−PnY (Ac|Xn) ≤ 1
δ

∣∣E[f(W ∗n)|Xn]−E[f(Y ∗n )|Xn]
∣∣+(PnY ((Ac)δ|Xn)−PnY (Ac|Xn)),

which implies that:

PnW (A|Xn)−PnY (A|Xn) ≥ −1
δ

∣∣E[f(W ∗n)|Xn]−E[f(Y ∗n )|Xn]
∣∣−(PnY ((Ac)δ|Xn)−PnY (Ac|Xn))

The desired result follows.

Corollary 1. Suppose we have the same assumptions as Lemma 2. Then, for
any c ∈ R, we have

|PnW ((−∞, c)|Xn)− PnY ((−∞, c)|Xn)| ≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + PnY ([c− ζ, c+ ζ]|Xn)

Proof. Let us apply Lemma 2 to the set A = (−∞, c), it follows

|PnW ((−∞, c)|Xn)− PnY ((−∞, c)|Xn)|

≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + max{(PnY (Aζ \A|Xn), PnY ((Ac)ζ \Ac|Xn)}

2



= 1
ζ
β(W ∗n , Y ∗n ;Xn) + max{PnY ( [c, c+ ζ) |Xn), PnY ( (c− ζ, c) |Xn)}

≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + PnY ([c− ζ, c+ ζ]|Xn),

which concludes the proof.

Theorem 3. Suppose that, for each n, the probability density function of
√
n(g(θP∗n )−

g(θ̂n)) is uniformly bounded. Suppose that Assumptions 1, 2 and 3 hold. Then for
any 0 < ε < α:

Pnη [qPα−ε(Xn) ≤ qBα (Xn) ≤ qPα+ε(Xn)]→ 1 as n→∞.

That is, the α-quantile of the bootstrap is in between the α − ε and α + ε quantiles
of the posterior of g(θ) with high probability.

Proof. Define, for any 0 < β < 1, the critical values cB∗β (Xn) and cP∗β (Xn) as:

cB∗β (Xn) ≡ inf
c
{c ∈ R | PB∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ β},

cP∗β (Xn) ≡ inf
c
{c ∈ R | PP∗(

√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn) ≥ β}.

Note that the critical values cB∗β (Xn), cP∗β (Xn) and the quantiles for g(θB∗n ) and
g(θP∗n ) are related through the equation:

qBβ (Xn) = g(θ̂n) + cB∗β (Xn)/
√
n,

qPβ (Xn) = g(θ̂n) + cP∗β (Xn)/
√
n.

This implies that:

Pnη [qPα−ε(Xn) ≤ qBα (Xn) ≤ qPα+ε(Xn)] = Pnη [cP∗α−ε(Xn) ≤ cB∗α (Xn) ≤ cP∗α+ε(Xn)]

We start by deriving a convenient bound for the difference between the conditional
distributions of

√
n(g(θB∗n ) − g(θ̂n)) and the distribution of

√
n(g(θP∗n ) − g(θ̂n)).

Define the random variables:

W ∗n ≡
√
n(g(θB∗n )− g(θ̂n)), Y ∗n ≡

√
n(g(θP∗n )− g(θ̂n)).
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Applying Corollary 1 to W ∗n and Y ∗n , we obtain:∣∣∣PB∗ (√n(g(θB∗n )− g(θ̂n)) ≤ c |Xn
)
− PP∗

(√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn

)∣∣∣
≤ 1
ζ
β(
√
n(g(θB∗n )− g(θ̂n)) ,

√
n(g(θP∗n )− g(θ̂n));Xn)

+ sup
c∈R

PP∗
(
c− ζ ≤

√
n(g(θP∗n )− g(θ̂n)) ≤ c+ ζ |Xn

)
We use this relation between the conditional c.d.f. of

√
n(g(θB∗n ) − g(θ̂n)) and the

conditional c.d.f. of
√
n(g(θP∗n )−g(θ̂n)) to show that the quantiles of these distribu-

tions should be close to each other. To simplify the notation, define the functions:

A1(ζ,Xn) ≡ 1
ζ
β(
√
n(g(θB∗n )− g(θ̂n)) ,

√
n(g(θP∗n )− g(θ̂n));Xn),

A2(ζ,Xn) ≡ sup
c∈R

PP∗
(
c− ζ ≤

√
n(g(θP∗n )− g(θ̂n)) ≤ c+ ζ |Xn

)
.

Observe that if the data Xn were such that A1(ζ,Xn) < ε/2 and A2(ζ,Xn) < ε/2,
then for any c ∈ R:∣∣∣PB∗ (√n(g(θB∗n )− g(θ̂n)) ≤ c |Xn

)
− PP∗

(√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn

)∣∣∣
≤ A1(ζ,Xn) +A2(ζ,Xn) < ε. (B.1)

This inequality implies that:

cP∗α−ε(Xn) ≤ cB∗α (Xn) ≤ cP∗α+ε(Xn),

whenever Xn is such that A1(ζ,Xn) < ε/2 and A2(ζ,Xn) < ε/2. To see this,
evaluate equation (B.1) at c = cP∗α+ε(Xn). This implies that:

−ε < PB∗
(√

n(g(θB∗n )− g(θ̂n)) ≤ cP∗α+ε(Xn) |Xn
)
− PP∗

(√
n(g(θP∗n )− g(θ̂n)) ≤ cP∗α+ε(Xn) |Xn

)
≤ PB∗

(√
n(g(θB∗n )− g(θ̂n)) ≤ cP∗α+ε(Xn) |Xn

)
− (α+ ε).

Consequently:

cP∗α+ε(Xn) ∈ {c ∈ R | PB∗(
√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ α}.
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Since:

cB∗α (Xn) ≡ inf
c
{c ∈ R | PB∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ α},

it follows that
cB∗α (Xn) ≤ cP∗α+ε(Xn).

To obtain the other inequality, evaluate equation (B.1) at c = cB∗α (Xn). This implies
that:

−ε < PP∗
(√

n(g(θP∗n )− g(θ̂n)) ≤ cB∗α (Xn) |Xn
)
− PB∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ cB∗α (Xn) |Xn)

≤ PP∗
(√

n(g(θP∗n )− g(θ̂n)) ≤ cB∗α (Xn) |Xn
)
− α,

and so, by analogous reasoning, we get:

cP∗α−ε(Xn) ≤ cB∗α (Xn).

Now we can finish the proof. Since the probability distribution function of
√
n(g(θP∗n )−

g(θ̂n)) is uniformly bounded, there exists K > 0 such that:

PP∗(
√
n(g(θP∗n )− g(θ̂n) ∈ [a, b] |Xn) ≤ K · |a− b|, ∀a, b ∈ R.

This implies that
A2(ζ∗, Xn) < 2ζ∗ ·K.

Given ε > 0, we can choose ζ∗ = ε/(4K). Therefore,

P(A2(ζ∗, Xn) < ε/2) = 1.

Since assumptions 1, 2 and 3 hold, by Theorem 1, we have that there existsN (ζ∗, ε/2, δ)
such that for n > N(ζ∗, ε/2, δ):

Pnθ (A1(ζ∗, Xn) > ε/2 ) < δ.
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It follows that for n > N (ε/2, δ)} ≡ N (ε, δ)

Pnη (cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn))

≥ Pnη (A1(ζ∗, Xn) < ε/2 and A2(ζ∗, Xn) < ε/2)

= 1− Pnη (A1(ζ∗, Xn) > ε/2 or A2(ζ∗, Xn) > ε/2)

≥ 1− Pnη (A1(ζ∗, Xn) > ε/2)− Pnη (A2(ζ∗, Xn) > ε/2)

≥ 1− δ,

which concludes the proof.
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B.2 Posterior Distribution of g(θP∗) under directional dif-
ferentiability

This section establishes the closeness between bootstrap and posterior quantiles
that we assumed in Theorem 2 for the special case of directionally differentiable
functions. For the sake of completeness, we provide a slightly more general result
based on high-level assumptions that we then verify for the special case of direc-
tionally differentiable g(·). Our method of proof requires us to impose additional
regularity conditions (besides directional differentiability) to establish closeness in
quantiles. This means that directional differentiability is not a sufficient condition
for establishing the required closeness in quantiles.

Assumption 4. There exists a function hθ0(Z,Xn) such that:

i) β(
√
n(g(θB∗n )− g(θ̂n)), hθ0(Z,Xn); Xn) p→ 0.

ii) The cumulative distribution function of Y ≡ hθ0(Z,Xn) conditional on Xn,
denoted Fθ0(y|Xn), is Lipschitz continuous in y—almost surely in Xn for every
n—with a constant k that does not depend on Xn.

The first part of Assumption 4 simply requires the distribution of
√
n(g(θB∗n )−g(θ̂n)),

conditional on the data, to have a well-defined limit (which is neither assumed nor
guaranteed by Theorem 1).

We now establish a Lemma based on a high-level assumption implied by the
second part of Assumption 4. In what follows we use PZ to denote the distribution
of the random variable Z (which is independent of the data Xn for every n).

Assumption 5. The function hθ(Z,Xn) is such that for all positive (ε, δ) there
exists ζ(ε, δ) > 0 and N (ε, δ) for which

Pnη
(

sup
c∈R

PZ
(
c− ζ(ε, δ) ≤ hθ(Z,Xn) ≤ c+ ζ(ε, δ)

∣∣∣Xn
)
> ε

)
< δ,

provided n ≥ N (ε, δ).

Assumption 5 is implied by the second part of Assumption 4:

PZ
(
c− ζ(ε, δ) ≤ hθ(Z,Xn) ≤ c+ ζ(ε, δ)

∣∣∣Xn
)
,

equals:
Fθ(c+ ζ(ε, δ)|Xn)− Fθ(c− ζ(ε, δ)|Xn) ≤ 2ζ(ε, δ)k.
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Last inequality holds since, by assumption, Fθ(y|Xn) is Lipschitz continuous—for
almost every Xn for every n—with a constant k that does not depend on Xn. By
choosing ζ(ε, δ) equal to ε/4k, then

PZ
(
c− ζ(ε, δ) ≤ hθ(Z,Xn) ≤ c+ ζ(ε, δ)

∣∣∣Xn
)
≤ ε

2 ,

for every c, implying that Assumption 5 holds.

We now show that any random variable satisfying the weak convergence assump-
tion in the first part of Assumption 4 has a conditional α-quantile that—with high
probability—lies in between the conditional (α − ε) and (α + ε)-quantiles of the
limiting distribution.

Lemma 3. Let θ∗n denote a random variable whose distribution, P ∗, depends on
Xn = (X1, . . . , Xn) and let Z be the limiting distribution of Zn ≡

√
n(θ̂n − θ) as

defined in Assumption 2. Suppose that

β(
√
n(g(θ∗n)− g(θ̂n)), hθ(Z,Xn);Xn) p→ 0.

Define c∗α(Xn) and cα(Xn) as the critical values such that:

c∗α(Xn) ≡ inf
c
{c ∈ R | P∗(

√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α}.

cα(Xn) ≡ inf
c
{c ∈ R | P∗(hθ(Z,Xn) ≤ c |Xn) ≥ α}.

Suppose hθ(Z,Xn) satisfies Assumption 5. Then for any 0 < ε < α and δ > 0 there
exists N (ε, δ) such that for n > N(ε, δ):

Pnη (cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn)) ≥ 1− δ.

Proof. We start by deriving a convenient bound for the difference between the con-
ditional distributions of

√
n(g(θ∗n)−g(θ̂n)) and the distribution of hθ(Z,Xn). Define

the random variables:

W ∗n ≡
√
n(g(θ∗n)− g(θ̂n)), Y ∗n ≡ hθ(Z,Xn).

Denote by PnW and PnY the probabilities that each of these random variables induce
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over the real line. Let c ∈ R be some constant. By applying Lemma 2 in Appendix
B.1 to the set A = (−∞, c) it follows that for any ζ > 0:

|PnW ((−∞, c)|Xn)− PnY ((−∞, c)|Xn)|

≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + max{(PnY (Aζ \A|Xn), PnY ((Ac)ζ \Ac|Xn)}

= 1
ζ
β(W ∗n , Y ∗n ;Xn) + max{PnY ( [c, c+ ζ) |Xn), PnY ( (c− ζ, c) |Xn)}

≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + PZ (c− ζ ≤ hθ(Z,Xn) ≤ c+ ζ |Xn)

where for any set A, we define Aδ ≡ {y ∈ Rk : ‖x− y‖ < δ for some x ∈ A} (see
Lemma 2). Therefore:

|P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn)− PZ (hθ(Z,Xn) ≤ c |Xn) |

≤ 1
ζ
β(
√
n(g(θ∗n)− g(θ̂n)) , hθ(Z,Xn);Xn)

+ sup
c∈R

PZ (c− ζ ≤ hθ(Z,Xn) ≤ c+ ζ |Xn)

We use this relation between the conditional c.d.f. of
√
n(g(θ∗n)− g(θ̂n)) and the

conditional c.d.f. of hθ(Z,Xn) to show that quantiles of these distributions should
be close to each other.

To simplify the notation, define the functions:

A1(ζ,Xn) ≡ 1
ζ
β(
√
n(g(θ∗n)− g(θ̂n)) , hθ(Z,Xn);Xn),

A2(ζ,Xn) ≡ sup
c∈R

PZ (c− ζ ≤ hθ(Z,Xn) ≤ c+ ζ |Xn)

Observe that if the dataXn were such that A1(ζ,Xn) < ε/2 and A2(ζ,Xn) < ε/2
then for any c ∈ R:

|P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn)− PZ (hθ(Z,Xn) ≤ c |Xn) |

≤ A1(ζ,Xn) +A2(ζ,Xn)

< ε.
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This would imply that for any c ∈ R:

− ε < P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn)− PZ (hθ(Z,Xn) ≤ c |Xn) < ε. (B.2)

We now show that this inequality implies that:

cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn),

whenever Xn is such that A1(ζ,Xn) < ε/2 and A2(ζ,Xn) < ε/2. To see this,
evaluate equation (B.2) at cα+ε(Xn). This implies that:

−ε < P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ cα+ε(Xn) |Xn)− PZ (hθ(Z,Xn) ≤ cα+ε(Xn) |Xn)

≤ P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ cα+ε(Xn) |Xn)− (α+ ε).

Consequently:

cα+ε(Xn) ∈ {c ∈ R | P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α}.

Since:
c∗α(Xn) ≡ inf

c
{c ∈ R | P∗(

√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α},

it follows that
c∗α(Xn) ≤ cα+ε(Xn).

To obtain the other inequality, evaluate equation (B.2) at c∗α(Xn). This implies
that:

−ε < PZ (hθ(Z,Xn) ≤ c∗α(Xn) |Xn)− P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c∗α(Xn) |Xn)

≤ PZ (hθ(Z,Xn) ≤ c∗α(Xn) |Xn)− α,

it follows that
cα−ε(Xn) ≤ c∗α(Xn).

This shows that whenever the data Xn is such that A1(ζ,Xn) < ε/2 and
A2(ζ,Xn) < ε/2

cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn).

To finish the proof, note that by Assumption 5 there exists ζ∗ ≡ ζ(ε/2, δ/2) and
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N (ε/2, δ/2) that guarantees that if n > N (ε/2, δ/2):

Pnθ (A2(ζ∗, Xn) > ε/2) < δ/2.

Also, by the convergence assumption of this Lemma, there is N (ζ∗, ε/2, δ/2) such
that for n > N(ζ∗, ε/2δ/2):

Pnθ (A1(ζ∗, Xn) > ε/2 ) < δ/2.

It follows that for n > max{N (ζ∗, ε/2, δ/2),N (ε/2, δ/2)} ≡ N (ε, δ)

Pnη (cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn))

≥ Pnη (A1(ζ∗, Xn) < ε/2 and A2(ζ∗, Xn) < ε/2)

= 1− Pnη (A1(ζ∗, Xn) > ε/2 or A2(ζ∗, Xn) > ε/2)

≥ 1− Pnη (A1(ζ∗, Xn) > ε/2)− Pnη (A2(ζ∗, Xn) > ε/2)

≥ 1− δ,

We have shown that if
√
n(g(θ∗n)− g(θ̂n)) is any random variable satisfying the

assumptions of Lemma 3, its conditional α-quantile lies—with high probability—
between the conditional (α − ε) and (α + ε) quantiles of the limiting distribution
hθ(Z,Xn). The next Lemma considers the case in which θ∗n is either θB∗n or θP∗n and
characterizes the asymptotic behavior of the c.d.f. of

√
n(g(θ̂n) − g(θ)) evaluated

at bootstrap and posterior quantiles. The main result is that the c.d.f. evaluated
at the bootstrap α-quantile is—in large samples—close to same c.d.f. evaluated at
the (α − ε) and (α + ε) posterior quantiles. We note that this result could not be
obtained directly from the fact that the bootstrap and posterior quantiles converge
in probability to each other, as some additional regularity in the limiting distribution
is needed. This is why it was important to establish Lemma 3 before the following
Lemma.

Lemma 4. Suppose that Assumptions 1, 2, 3 and 4 hold. Fix α ∈ (0, 1). Let
cB∗α (Xn) and cP∗α (Xn) denote critical values satisfying:

cB∗α (Xn) ≡ inf
c
{c ∈ R | PB∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ α},

cP∗α (Xn) ≡ inf
c
{c ∈ R | PP∗(

√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn) ≥ α}.
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Then, for any 0 < ε < α and δ > 0 there exists N(ε, δ) such that for all n > N(ε, δ):

Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≤ Pnη (

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ,

(B.3)

Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≥ Pnη (

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ.

(B.4)

Proof. Let θ∗ denote either θP∗n or θB∗n . Let cα(Xn) and c∗α(Xn) be defined as
in Lemma 3. Under Assumptions 1, 2, 3 and 4, the conditions for Lemma 3 are
satisfied. It follows that for any 0 < ε < α and δ > 0 there exists N (ε, δ) such that
for all n > N (ε, δ):

Pnη (cα+ε/2(Xn) < c∗α(Xn)) ≤ δ/2 and Pnη (c∗α(Xn) < cα−ε/2(Xn)) ≤ δ/2.

Therefore:

Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn))

= Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn) and cα+ε/2(Xn) ≥ c∗α(Xn))

+ Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn) and cα+ε/2(Xn) < c∗α(Xn))

(by the additivity of probability measures)

≤ Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn)) + Pnη (cα+ε/2(Xn) < c∗α(Xn))

(by the monotonicity of probability measures)

≤ Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn)) + δ/2. (B.5)
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Also, we have that:

Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn))

≥ Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn) and c∗α(Xn) ≥ cα−ε/2(Xn))

≥ Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn) and c∗α(Xn) ≥ cα−ε/2(Xn))

= Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn)) + Pnη (c∗α(Xn) ≥ cα−ε/2(Xn))

− Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn) or c∗α(Xn) ≥ cα−ε/2(Xn))

(using P (A ∩B) = P (A) + P (B)− P (A ∪B))

≥ Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn))− (1− Pnη (c∗α(Xn) ≥ cα−ε/2(Xn)))

(since Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn) or c∗α(Xn) ≥ cα−ε/2(Xn)) ≤ 1)

= Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn))− Pnη (c∗α(Xn) < cα−ε/2(Xn))

≥ Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn))− δ/2. (B.6)

Replacing c∗α by cB∗α in (B.6) and c∗α by cP∗α and α by α− ε in (B.5) implies that for
n > N(ε, δ):

Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn)) ≥ Pnη (

√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn))− δ/2

Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn)) ≤ Pnη (

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ/2.

Combining the previous two equations gives that for n > N(ε, δ):

Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≤ Pnη (

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ.

This establishes equation (B.3). Replacing θ∗n by θB∗n in (B.5) and replacing θ∗n by
θP∗n , α by α+ ε (B.6) implies that for n > N(ε, δ):

Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn)) ≤ Pnη (

√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) + δ/2

Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn)) ≥ Pnη (

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ/2

and combining the previous two equations gives that for n > N(ε, δ):

Pnη (
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≥ Pnη (

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ,

which establishes equation (B.4).
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Lemma 5. let Z be the limiting distribution of Zn ≡
√
n(θ̂n − θ) as defined in

Assumption 2. Let Z∗ be a random variable independent of both Xn = (X1, . . . , Xn)
and Z and let θ0 denote the parameter that generated the data. Suppose that g is
directionally differentiable in the sense defined in Remark 2 of the main text. Then,
Assumption 4 (i) holds with hθ0(Z,Zn) = g′θ0

(Z∗ + Zn)− g′θ0
(Zn).

Proof. We start by analyzing the limiting distribution of both:

√
n(g(θ0 + Z∗√

n
+ Zn√

n
)− g(θ0))

and
√
n(g(θ0 + Zn√

n
)− g(θ0))

as a function of (Z∗, Zn). Note that the delta method for directionally differentiable
functions (e.g., Theorem 2.1 in Fang and Santos (2019)) and the continuity of the
directional derivative implies that jointly:

√
n(g(θ0 + Z∗√

n
+ Zn√

n
)− g(θ0)) d→ g′θ0(Z∗ + Z)

g′θ0(Z∗ + Zn) d→ g′θ0(Z∗ + Z)
√
n(g(θ0 + Zn/

√
n)− g(θ0)) d→ g′θ0(Z)

g′θ0(Zn) d→ g′θ0(Z)

where Z is independent of Z∗. Note that the joint (and unconditional) convergence
in distribution above implies that:

An ≡
√
n(g(θ0 + Z∗√

n
+ Zn√

n
)− g(θ̂n))

and
Bn ≡ g′θ0(Z∗ + Zn)− g′θ0(Zn)

are such that |An − Bn| = op(1), where the op(1) term refers to convergence in
probability unconditional on the data as a function of Z∗ and Zn.

Note that for any two random variables An and Bn we have that for any ε

sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣

is bounded above by:

14



ε+ 2PZ∗ [ |An −Bn| > ε |Xn],

where the probability is taken over the distribution of Z∗, denoted PZ∗ .1 Note that
the unconditional convergence in probability result for |An −Bn| implies that:

Eθ[PZ
∗ [ |An −Bn| > ε |Xn]]→ 0,

as the expectation is taken over different data realizations. Note that in light of the
inequalities above we have that:

Pnη

(
sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣ > 2ε

)
(B.7)

is bounded above by:

Pnη
(
ε+ 2PZ∗ [ |An −Bn| > ε |Xn] > 2ε

)
,

which equals

Pnη
(
PZ
∗ [ |An −Bn| > ε |Xn] > ε/2

)
.

Thus, by Markov’s inequality:

Pnη

(
sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣ > 2ε

)
≤ 2Eθ[PZ

∗ [ |An −Bn| > ε |Xn]]/ε.

Implying that:
sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣ p→ 0,

as desired.2

B.3 Additional Lemmas

Lemma 6. Let S(θ) be an m× n matrix of sign restrictions whose entries depend
on the finite dimensional parameter θ ≡ (vec(A)′, vech(Σ)′)′. Given Σ is invertible,

1This is a common bound used in bootstrap analysis; see for example, Theorem 23.9 p. 333 in
Van der Vaart (2000).

2We are extremely thankful to an anonymous referee who suggested major simplifications to the
previous version of the proof of this Lemma.
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consider the program

g(θ) ≡ max
x∈Rn

e′iCk(A)x, s.t. x′Σ−1x = 1, S(θ)x ≥ 0, (B.8)

where ei denotes the i-th column of the identity matrix of dimension n. Suppose

1. {x ∈ Rn | S(θ)x ≥ 0} is nonempty in a neighborhood of θ.

2. S(θ) is a continuously differentiable function of θ,

3. There exists an optimal solution x∗(θ) to (B.8) for which its corresponding
active constraints S∗(θ) ∈ Rm∗×n (m∗ ≤ m) can be written as positive linear
combination of a full row-rank matrix S̃∗(θ) ∈ Rr×n, r ≤ m∗ and S̃∗(θ)x∗(θ) =
0r×1. That is, there exists α ∈ Rr×m

∗
+ s.t.

S̃∗(θ)′α = S∗(θ)′,

and
S̃∗(θ)x∗(θ) = 0r×1.

Then g(θ) is locally Lipschitz.

Proof. DefineD(θ) ≡ {x ∈ Rn|x′Σ−1x = 1, S(θ)x ≥ 0}. Assumption 1 of the current
lemma implies that D(θ) is nonempty in a neighborhood of θ. We use Proposition 6
from Morand, Reffett, and Tarafdar (2015) to prove that g(θ) is a locally Lipschitz
function. Thus, we need to verify that (i) D(θ) is uniformly compact near θ and (ii)
the Mangasarian-Fromowitz constraint qualification (MFCQ) holds at some optimal
solution x∗(θ). This second requirement is equivalent to verifying:

1. The gradient of the equality constraints (∇xhj(x∗(θ), θ) for j = 1, .., q) are
linear independent vectors. In our problem we only have one equality con-
straint that is defined by h(x, θ) ≡ x′Σ−1x − 1. Since ∇xh(x, θ) = 2Σ−1x

and x∗(θ)′Σ−1x∗(θ) = 1, it follows that ∇xh(x∗(θ), θ) 6= 0 verifies this linear
independent condition.

2. There exists y ∈ Rn such that,∇xgi(x∗(θ), θ)·y < 0 for all i ∈ I ≡ {i|gi(x∗(θ), θ) =
0} and ∇xhj(x∗(θ), θ) · y = 0 for all j = 1, . . . , q. In our problem we have m-
inequality constraints gi(x, θ) ≡ −e′iS(θ)x for i = 1, ...,m and only one equal-
ity constraint h(x, θ) = x′Σ−1x− 1. Under the assumption of this lemma, we

16



have that at x∗(θ) the set I has m∗ elements that are defined by the active
constraints (the rows of S∗(θ)). Then, the verification of this condition is
equivalent to −S∗(θ)y < 0 and Σ−1x∗(θ) · y = 0. We will verify this condition
in step 2.

Step 1: Define

D(θ, δ) ≡
⋃

{θ̃:||θ̃−θ||<δ}

D(θ̃) ⊆ E(θ, δ) ≡
⋃

{θ̃:||θ̃−θ||<δ}

E(θ̃)

where E(θ̃) ≡ {x ∈ Rn |x′Σ̃−1x = 1}. It is sufficient to show that for δ small enough,
there exists Mθ(δ) > 0 such that E(θ̃) ⊆ B0(Mθ(δ)) for all θ̃ such that ||θ̃− θ|| < δ;
where B0(Mθ(δ)) is an open ball centered at 0 with radius M(δ). This is sufficient
since

Closure(D(θ, δ)) ⊆ Closure(E(θ, δ)) ⊆ Closure(B0(Mθ(δ))) = {x | ||x′x|| ≤Mθ(δ)},

implies that the closure of D(θ, δ) is a subset of a compact subset, which implies
the uniform compactness of D(θ).

For each θ̃ = (vec(Ã)′, vech(Σ̃)′)′ consider the optimization problem

v(Σ̃) ≡ max
x∈Rn

x′x, s.t. x′Σ̃−1x = 1.

The necessary first-order conditions for this problem are

(In − λΣ̃−1)x = 0,

where λ is a scalar lagrange multiplier. The first-order conditions are thus satis-
fied by pairs (λ∗, x∗) where λ∗ is the eigenvalue of Σ̃ and x∗ is its corresponding
eigenvector. By the definition of the eigenvector

Σ̃−1x∗ = (1/λ∗)x∗,

Thus,
x∗′x∗ = λ∗.

17



This means that value of the program above is given by

v(Σ̃) = maxeig(Σ̃).

Consequently,
x ∈ E(θ̂) =⇒ ||x′x|| ≤

(
maxeig(Σ̃)

)1/2
.

Since Σ is invertible, there exists δ small enough and a constant c such that

1/maxeig(Σ̃) = mineig(Σ̃−1) > c, for all ||θ̃ − θ|| ≤ δ.

Then, E(θ̃) ⊂ B0(c−1/2) for all θ̃ such that ||θ̃ − θ|| < δ.

Step 2: We now show that the MFCQ holds at a solution x∗(θ) that satisfies our
assumptions. Let S∗(θ) denote the matrix of active constraints at x∗(θ), that is

S∗(θ)x∗(θ) = 0m∗×1.

We have assumed there exists a full-row rank matrix S̃∗(θ) of dimension r × n,
r ≤ m∗, and a matrix α of dimension r ×m∗ with nonnegative entries such that

S̃∗(θ)′α = S∗(θ)′, S̃∗(θ)x∗(θ) = 0r×1

The full row-rank assumption about S̃∗(θ) implies r ≤ n − 1 (if not x∗(θ) = 0 and
this contradicts x∗(θ)′Σ−1x∗(θ) = 1).

We now argue that S̃∗(θ)′ ∈ Rn×r and Σ−1x∗(θ) are linearly independent. Sup-
pose this is not the case. Since S̃∗(θ)′ has full column rank and x∗(θ) 6= 0 (as
x∗(θ)′Σ−1x∗(θ) = 1) then there must exist β ∈ Rr such that

S̃∗(θ)′β = Σ−1x∗(θ).

This implies
(x∗)′S̃∗(θ)′β = x∗(θ)′Σ−1x∗(θ) = 1,

but the left-hand side in the equation is equal to (S̃∗(θ)x∗)′β, which is zero by the
definition of S̃∗(θ) and so we get the required contradiction.
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Linear independence implies that

[Σ−1x∗, S̃∗(θ)′],

has column rank (r + 1) ≤ n. This means that for any vector c ∈ Rr with strictly
positive entries there exists y(c) ∈ Rn such that

[Σ−1x∗, S̃∗(θ)′]′y(c) = [0, c′]′.

Consequently,
S∗(θ)y(c) = (α′S̃∗(c))y(c) = α′c > 0.

and
(Σ−1x∗)′y(c) = 0.

Thus, the MFCQ condition is satisfied.

C max{θ1, θ2}

In this Appendix we illustrate Theorem 2 with an alternative example. Let (X1, . . . Xn)
be an i.i.d sample of size n from the statistical model:

Xi ∼ N2(θ,Σ), θ = (θ1, θ2)′ ∈ R2, Σ =
(
σ2

1 σ12

σ12 σ2
2

)
∈ R2×2,

where Σ is assumed known. Consider the family of priors:

θ ∼ N2(µ, (1/λ2)Σ), µ = (µ1, µ2)′ ∈ R2

indexed by the location parameter µ and the precision parameter λ2 > 0. The
object of interest is the transformation:

g(θ) = max{θ1, θ2}.

Relation to the main assumptions: The transformation g is differentiable ev-
erywhere except at θ1 = θ2. It can be proved with standard arguments that g is
locally Lipschitz. This implies that Assumption 1 is satisfied.
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Once again, we take θ̂n to be the maximum likelihood estimator given by θ̂n =
(1/n)

∑n
i=1Xi and so

√
n(θ̂n − θ) ∼ Z ∼ N2(0,Σ). Thus, Assumption 2 is satisfied.

The posterior distribution for θ is given by Gelman, Carlin, Stern, and Rubin
(2009), p. 89:

θP∗n |Xn ∼ N2
( n

n+ λ2 θ̂n + λ2

n+ λ2µ ,
1

n+ λ2 Σ
)
.

and so by an analogous argument to the absolute value example we have that:

β(
√
n(θP∗n − θ̂n),N2(0,Σ));Xn) p→ 0,

which implies that Assumption 3 holds. Since θP∗n = θ̂n + ZP∗n /
√
n, we have

ZP∗n |Xn ∼ N2
(
An,Σn

)
,where An = λ2√n

n+ λ2 (µ− θ̂n), Σn =
√
n√

n+ λ
Σ

Define the random variable Y ≡
√
n(g(θP∗n )− g(θ̂n)). We have

Y = max{ZP∗n,1 +
√
n · θ̂n,1, ZP∗n,2 +

√
n · θ̂n,2} −max{

√
n · θ̂n,1,

√
n · θ̂n,2}

Define the random variableMn ≡ max{
√
n · θ̂n,1,

√
n · θ̂n,2}. Based on the results

of Nadarajah and Kotz (2008), the (conditional) density of Y , denoted fθ0(y|Xn),
is given by:

1
σ1,n

φ

(
Cn,1 − y
σ1,n

)
Φ
(

1√
1− ρ2

n

(
ρn(Cn,2 − y)

σ1,n
+ y − Cn,2

σ2,n

))

+ 1
σ2,n

φ

(
Cn,2 − y
σ2,n

)
Φ
(

1√
1− ρ2

n

(
ρn(Cn,2 − y)

σ2,n
+ y − Cn,1

σ1,n

))
,

where Cn,1 = An,1 +
√
n · θ̂n,1 −Mn and Cn,2 = An,2 +

√
n · θ̂n,2 −Mn. Also, the

parameters σ2
1,n, σ2

2,n and σ12,n define the entries of Σn. And, ρn = σ12,n/σ1,nσ2,n

and φ,Φ are the p.d.f. and the c.d.f. of a standard normal. It follows that:

fθ0(y|Xn) ≤ 1√
2π

(
1
σ1,n

+ 1
σ2,n

)
<

2√
2π

( 1
σ1

+ 1
σ2

)

Last inequality follows since Σn converge to Σ. This implies that the probability
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distribution function of
√
n(g(θP∗n ) − g(θ̂n)) is uniformly bounded. Theorem 3 in

Section B.1 of the Appendix implies that assumptions of Theorem 2 are verified.

Graphical illustration of coverage failure: Theorem 2 implies that cred-
ible sets based on the quantiles of g(θP∗n ) will effectively have the same asymptotic
coverage properties as confidence sets based on quantiles of the bootstrap. For
the transformation g(θ) = max{θ1, θ2}, this means that both methods lead to de-
ficient frequentist coverage at the points in the parameter space in which θ1 = θ2.
This is illustrated in Figure 2, which depicts the coverage of a nominal 95% boot-
strap confidence set and different 95% credible sets. The coverage is evaluated
assuming θ1 = θ2 = θ ∈ [−2, 2] and Σ = I2. The sample sizes considered are
n ∈ {100, 200, 300, 500}. A prior characterized by µ = 0 and λ2 = 1 is used to cal-
culate the credible sets. The credible sets and confidence sets have similar coverage
as n becomes large and neither achieves 95% probability coverage for all θ ∈ [−2, 2].
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Remark 1. Dümbgen (1993) and Hong and Li (2018) have proposed re-scaling
the bootstrap to conduct inference about a directionally differentiable parameter.
More specifically, the re-scaled bootstrap in Dümbgen (1993) and the numerical
delta-method in Hong and Li (2018) can be implemented by constructing a new
random variable:

y∗n ≡ n1/2−δ
(
g

( 1
n1/2−δZ

∗
n + θ̂n

)
− g(θ̂n)

)
,

where 0 ≤ δ ≤ 1/2 is a fixed parameter and Z∗n could be either ZP∗n or ZB∗n . The
suggested confidence interval is of the form:

CSHn (1− α) =
[
g(θ̂n)− 1√

n
c∗1−α/2, g(θ̂n)− 1√

n
c∗α/2

]
(C.1)

where c∗β denote the β-quantile of y∗n. Hong and Li (2018) have recently established
the pointwise validity of the confidence interval above.

Whenever (C.1) is implemented using posterior draws; i.e., by relying on draws
from:

ZP∗n ≡
√
n(θP∗n − θ̂n),

it seems natural to use the same posterior distribution to evaluate the credibility of
the proposed confidence set. Figure 2 reports both the frequentist coverage and the
Bayesian credibility of (C.1), assuming that the Hong and Li (2018) procedure is
implemented using the posterior:

θP∗n |Xn ∼ N2
( n

n+ 1 θ̂n ,
1

n+ 1I2
)
.

The following figure shows that at least in this example fixing coverage comes at
the expense of distorting Bayesian credibility.3

3The Bayesian credibility of CSHn (1− α) is given by:

P∗(g(θP∗n ) ∈ CSHn (1− α)|Xn)

= P∗
(
g(θ̂n)− 1√

n
c∗1−α/2(Xn) ≤ g(θP∗n ) ≤ g(θ̂n)− 1√

n
c∗α/2(Xn)

∣∣∣Xn

)
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