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a b s t r a c t

This paper examines the asymptotic behavior of the posterior distribution of a possibly
nondifferentiable function g(θ ), where θ is a finite-dimensional parameter of either a
parametric or semiparametric model. The main assumption is that the distribution of a
suitable estimator θ̂n, its bootstrap approximation, and the Bayesian posterior for θ all
agree asymptotically.

It is shown that whenever g is locally Lipschitz, though not necessarily differentiable,
the posterior distribution of g(θ ) and the bootstrap distribution of g (̂θn) coincide
asymptotically. One implication is that Bayesians can interpret bootstrap inference for
g(θ ) as approximately valid posterior inference in a large sample. Another implication—
built on known results about bootstrap inconsistency—is that credible intervals for
a nondifferentiable parameter g(θ ) cannot be presumed to be approximately valid
confidence intervals (even when this relation holds true for θ ).
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper studies the posterior distribution of a real-valued function g(θ ), where θ is a parameter of finite dimension
in either a parametric or semiparametric model. We focus on transformations g(θ ) that are locally Lipschitz continuous
but possibly nondifferentiable. Some stylized examples are

|θ |,max{0, θ},max{θ1, θ2}.

More generally, our framework covers value functions of stochastic mathematical programs (Shapiro, 1991), which appear
in the study of the bounds of the identified set in partially identified models.1
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The potential nondifferentiability of g(·) poses challenges for frequentist inference. For example, different forms of the
bootstrap lose their consistency whenever differentiability is compromised; see Dümbgen (1993), Beran (1997), Andrews
(2000), Hong and Li (2018), and Fang and Santos (2019). To our knowledge, the literature has not yet explored how the
Bayesian posterior of g(θ ) relates to either the sampling or the bootstrap distribution of available plug-in estimators when
g is allowed to be nondifferentiable.

This paper studies these relations in large samples. The main assumptions are that: (i) there is an estimator for θ ,
denoted θ̂n, which is

√
n-asymptotically distributed according to some random vector Z (not necessarily Gaussian), (ii)

the bootstrap consistently estimates the asymptotic distribution of θ̂n and (iii) the Bayesian posterior distribution of θ
coincides with the asymptotic distribution of θ̂n; i.e., the Bernstein–von Mises Theorem holds for θ .2

This paper shows that—after appropriate centering and scaling—the posterior distribution of g(θ ) and the bootstrap
distribution of g (̂θn) are asymptotically equivalent. Indisputably, these asymptotic relations are straightforward to deduce
for (fully or directionally) differentiable functions. However, our main result shows that the asymptotic equivalence
between the bootstrap and posterior distributions holds more broadly, highlighting that such a relation is better
understood as a consequence of the continuous mapping theorem, as opposed to differentiability and the delta method.

It is important to note that the nondifferentiable functions studied in this paper depend only on θ . Our results do
not apply to the bootstrap/posterior distributions of test statistics, which depend explicitly on both θ and the data. In
fact, Chen et al. (2018a) have shown that the posterior and bootstrap distributions of profile likelihood ratio test statistics
for set-identified models differ asymptotically.3

The distinction between the local Lipschitz property and directional differentiability emphasized in our main result
is not just a technical refinement. We believe that such a distinction is practically useful, for example, when conducting
Bayesian estimation and inference of the bounds of the identified set in partially identified models, as recently suggested
by Kline and Tamer (2016) and Giacomini and Kitagawa (2018). The bounds of the identified set are typically value
functions of stochastic mathematical programs for which standard constraint qualifications suffice to verify the local
Lipschitz property.4 In contrast, directional differentiability requires additional conditions, which can be quite difficult to
verify even in specific applications.5 The local Lipschitz property allows us to relate robust Bayes procedures to bootstrap
based approaches for estimation/inference.6

Implications: The main results of this paper provide two useful and general insights. First, Bayesians can interpret
bootstrap-based estimation/inference for g(θ ) as approximately Bayesian in a large sample. For example, under regularity
conditions ensuring convergence in distribution to imply convergence in mean, an estimator for g(θ ) built upon the
bootstrap distribution of g (̂θn) (e.g., a bagging estimator reporting the mean of the bootstrap draws) can be interpreted
as an approximately Bayes estimator for g(θ ) (e.g., the posterior mean estimator).7 Hence, decision-theoretic optimality
of the Bayes estimator can be attached to the bootstrap-based estimator for g(θ ) in large samples irrespective of
g(θ ) being differentiable or not. This means that Bayesians can use bootstrap draws to conduct approximate posterior
estimation/inference for g(θ ), if computing θ̂n is simpler than Markov Chain Monte Carlo (MCMC) sampling.

Second, we show that whenever nondifferentiability causes the bootstrap confidence interval to cover g(θ ) less often
than desired—which is known to happen even under mild departures from differentiability—a credible interval based on
the quantiles of the posterior will have distorted frequentist coverage as well. In the case where g(·) only has directional
derivatives, as in the pioneering work of Hirano and Porter (2012), the unfortunate frequentist properties of credible
intervals can be attributed to the fact that the posterior distribution of g(θ ) does not coincide with the asymptotic
distribution of g (̂θn).

The rest of this paper is organized as follows. Section 2 presents a formal statement of the main results. Section 3
presents an illustrative example: the absolute value transformation. Section 4 concludes. The proofs of the main results
are collected in Appendix A. Additional derivations are presented in Appendix B (see supplementary materials).

2 See, for example, DasGupta (2008), p. 291 for a Bernstein–von Mises theorem for regular parametric models where Z is Gaussian; Ghosal et al.
(1995), p. 2147–2150 for a Bernstein–von Mises theorem for a class of parametric models whose likelihood ratio process is not Locally Asymptotically
Normal; and Castillo and Rousseau (2015), p. 2357 for a Bernstein–von Mises theorem for semiparametric models where an efficiency theory at rate
√
n is available.
3 See Example 3 in Section 5.3.3. of Chen et al. (2018a) and Appendix E.2 of Chen et al. (2018b).
4 See Theorem 4.2 in Fiacco and Ishizuka (1990) and Proposition 6 in Morand et al. (2015).
5 We discuss this point in the framework of set-identified Structural Vector Autoregressions in Section 2 and in Appendix B.3.
6 The word robust refers to robustness with respect to the choice of a prior distribution for the set-identified structural parameters of the model;

see Giacomini and Kitagawa (2018). The motivation for robustness in this context is that a prior imposed on unidentified parameters will not be
updated by the data even in large samples. Therefore, if one cannot form a credible prior for unidentified parameters, it would be desirable to draw
‘‘robust’’ posterior statements that are true for any prior in a class of prior distributions.
7 See Section 8.7 of Friedman et al. (2017) for a definition of bootstrap aggregation or bagging.



T. Kitagawa, J.L. Montiel Olea, J. Payne et al. / Journal of Econometrics 217 (2020) 161–175 163

2. Main results

Let Xn
= {X1, . . . , Xn} be a sample of size n from the model Pn

η , where η is a possibly infinite dimensional parameter
taking values in some space S. We assume there is a finite-dimensional parameter of interest, θ : S → Θ ⊆ Rp, and some
estimator θ̂n of θ . Let θ0 denote the true parameter—that is, θ0 ≡ θ (η0) with data generated according to Pn

η0
. Consider

the following assumptions:

Assumption 1. The function g : Rp
→ R is locally Lipschitz at (or near) θ0. That is, there exist a neighborhood V0 of θ0

and a constant c0 > 0 such that

|g(x) − g(y)| ≤ c0∥x − y∥ ∀ x, y ∈ V0.

See Clarke (1990), Chapter 1, p. 9 for a textbook reference.
Assumption 1 implies—by means of the well-known Rademacher’s Theorem (Evans and Gariepy, 2015, p. 81)—that g

is differentiable almost everywhere in a neighborhood of θ0. Thus, the functions considered in this paper allow only for
mild departures from differentiability near θ0.8 We have made local Lipschitz continuity our starting point—as opposed
to some form of directional differentiability—to emphasize that the asymptotic relation between Bootstrap and Bayes
inference does not hinge on delta method considerations.9 Later, we will also present examples where the local Lipschitz
property is easier to verify than directional differentiability.

Assumption 2. The sequence Zn ≡
√
n(̂θn − θ0)

d
→ Z .

Despite being high-level, there are well-known conditions for parametric or semiparametric models under which
Assumption 2 obtains (see, for example, Newey and McFadden, 1994 p. 2146). The convergence at rate

√
n is used for

notational simplicity, but it is not relevant for deriving our main results.10 The asymptotic distribution of Zn is typically
normal, but our main theorems do not exploit this feature (and thus, we have decided to leave the distribution of Z
unspecified).

In order to state the next assumption, we introduce additional notation. Define the set

BL(1,Rp) ≡

{
f : Rp

→ R
⏐⏐⏐ sup

a∈Rp
|f (a)| ≤ 1, and

|f (a1) − f (a2)| ≤ ∥a1 − a2∥, ∀a1, a2
}
.

Let φ∗
n and ψ∗

n be random vectors whose distribution depends on the data Xn. The bounded Lipschitz distance between
the distributions induced by φ∗

n and ψ∗
n (conditional on the data Xn) is defined as

β(φ∗

n , ψ
∗

n ; Xn) ≡ sup
f∈BL(1,Rp)

⏐⏐⏐E[f (φ∗

n )|X
n
] − E[f (ψ∗

n )|X
n
]

⏐⏐⏐.
The random vectors φ∗

n and ψ∗
n are said to converge in bounded Lipschitz distance in probability if β(φ∗

n , ψ
∗
n ; Xn)

p
→ 0 as

n → ∞.11
Let P denote some prior for θ and let θP∗

n denote the random variable with law equal to the posterior distribution of θ
given a sample Xn of size n. Let θB∗n denote the random variable with law equal to the bootstrap distribution of θ̂n given
a sample Xn of size n.

Remark 1. In a parametric model there are different ways of bootstrapping the distribution of θ̂n. One possibility is a
parametric bootstrap, which consists of generating draws (x1, . . . , xn) from the model Pn

η̂
, where η̂ is an estimator of η,

followed by an evaluation of θ̂n for each draw (Van der Vaart, 2000 p. 328). Another possibility is the multinomial bootstrap,
which generates draws (x1, . . . , xn) from its empirical distribution. Different options are also available in semiparametric
models. We do not take a stand on the specific bootstrap procedure used by the researcher as long as it is consistent, as
specified below.

8 Moreover, we assume that g is defined everywhere in Rp which rules out examples such as the ratio of means θ1/θ2 , θ2 ̸= 0 discussed in Fieller
(1954) and weakly identified Instrumental Variables models.
9 Directional differentiability is not a special case of local Lipschitzness. It is true that if g is locally Lipschitz at a point θ , then there is a

neighborhood of θ over which g is almost everywhere differentiable (by virtue of Rademacher’s theorem in Evans and Gariepy, 2015). However,
even if g is almost everywhere differentiable in a neighborhood of θ , it does not follow that the directional derivative of g at θ exists.
10 An additional motivation for using

√
n is that the Bernstein–von Mises theorem for θ , which will be invoked in Assumption 3, is usually verified

at this rate. Examples of the Bernstein–von Mises theorem at rates different to
√
n appear on Bochkina and Green (2014).

11 For a more detailed treatment of the bounded Lipschitz distance over probability measures see the ‘β ’ metric defined in p. 394 of Dudley
(2002). It is well-known that convergence in distribution is equivalent to convergence in the bounded Lipschitz distance; for example, see Lemma
2.2 in Van der Vaart (2000).
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The following assumption restricts the prior P for θ and the bootstrap procedure for θ̂n (after appropriate centering
and scaling).12

Assumption 3. The centered and scaled random variables

ZP∗

n ≡
√
n(θP∗

n − θ̂n) and ZB∗
n ≡

√
n(θB∗n − θ̂n),

converge (in the bounded Lipschitz distance in probability) to the asymptotic distribution of θ̂n, denoted Z , which is
independent of the data. That is,

β(ZP∗

n , Z; Xn)
p

→ 0 and β(ZB∗
n , Z; Xn)

p
→ 0.

Sufficient conditions for Assumption 3 to hold are the consistency of the bootstrap for the distribution of θ̂n (Horowitz,
2001; Van der Vaart and Wellner, 1996 Chapter 3.6, Van der Vaart, 2000 p. 340) and the Bernstein–von Mises Theorem
for θ (see DasGupta, 2008 for parametric versions and Castillo and Rousseau, 2015 for semiparametric ones).13,14

The following theorem shows that under the first three assumptions, the Bayesian posterior for g(θ ) and the frequentist
bootstrap distribution of g (̂θn) converge (after appropriate centering and scaling). Note that for any measurable function
g(·), be it differentiable or not, the posterior distribution of g(θ ) can be defined as the image measure induced by the
distribution of θP∗

n under the mapping g(·).

Theorem 1. Suppose that Assumptions 1–3 hold. Then,

β(
√
n(g(θP∗

n ) − g (̂θn)),
√
n(g(θB∗n ) − g (̂θn)); Xn)

p
→ 0.

That is, after centering and scaling, the posterior distribution g(θ ) and the bootstrap distribution of g (̂θn) are asymptotically
close to each other in terms of the bounded Lipschitz distance in probability.

Proof. See Appendix A.1. □

To the best of our knowledge, Theorem 1 is new.15 An analogous result for the case in which g is a directionally
differentiable function can be derived from an application of the delta method for directionally differentiable functions
in Shapiro (1991) or from Proposition 1 in Dümbgen (1993). We provide more details on p. 6 after Remark 2.

The intuition behind Theorem 1 is the following. The centered and scaled posterior and bootstrap distributions can be
written as

√
n(g(θP∗

n ) − g(θ̂n)) =
√
n(g(θ̂n + ZP∗

n /
√
n) − g(θ̂n)),

√
n(g(θB∗n ) − g(θ̂n)) =

√
n(g(θ̂n + ZB∗

n /
√
n) − g(θ̂n)).

Since ZP∗
n and ZB∗

n both converge to a common limit and θ̂n is asymptotically close to θ0, we can apply an argument
analogous to the one used in the proof of the (Lipschitz) continuous mapping theorem to get the desired result, but
focusing on a neighborhood around θ0 (where we have Lipschitz continuity). A crucial step is to show that ZP∗

n and ZB∗
n

converge unconditionally and, therefore, are tight; see Lemma 1. This means that the asymptotic relation between the

12 We center around θ̂n because we assume that θ is a well-behaved parameter, for which neither the bootstrap distribution nor the posterior
distribution need to be bias-adjusted.
13 The Bernstein–von Mises Theorem is oftentimes stated in terms of almost-sure convergence of the posterior to a Gaussian distribution (DasGupta,
2008 p. 291) or possibly to a non-Gaussian limit (Ghosal et al., 1995) in terms of the total variation distance. Convergence in total variation metric
implies convergence in the bounded Lipschitz distance in probability. In this paper, all the results concerning the asymptotic behavior of the posterior
are presented in terms of the bounded Lipschitz distance. This facilitates comparisons with the bootstrap.
14 Z∗P

n and Z∗B
n could be defined as general conditional distributions that depend on Xn that have a limit Z . We focus on bootstrap and posterior

draws because we are specifically interested in their behavior and also because there are well known conditions in parametric and semiparametric
models to verify our assumption.
15 Theorem 1 does not follow directly from the existing literature. First, we are assuming that g is locally Lipschitz at θ0 . This requires us to
restrict attention to the neighborhood of θ0 , which takes some additional work. Second, even if we were willing to assume that g is globally, rather
than locally, Lipschitz, the continuous mapping theorem in Proposition 10.7 in Kosorok (2008) does not imply our result. The reason is that we are
interested in the limit of the transformation

√
n(g (̂θP∗

n ) − g (̂θn)),

which depends on n. Unfortunately, a direct application of Kosorok’s theorem does not imply that the distribution of the random variable above is
close to

√
n(g (̂θn + Z/

√
n) − g (̂θn)),

which would be sufficient to establish our theorem, as both Z∗P
n and Z∗B

n converge to Z . Kosorok’s theorem only allows us to show that both

g(
√
n(̂θP∗

n − θ̂n)), g(
√
n(̂θB∗n − θ̂n))

converge in bounded Lipschitz distance to g(Z).
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bootstrap and Bayes distributions is a consequence of a (locally Lipschitz) continuous mapping theorem, and not of the
delta method.

Application to Set-Identified Structural Vector Autoregressions (SVARs): One illustration of the usefulness of
Theorem 1 is in the ‘‘robust Bayes’’ analysis of SVARs. Consider an n-dimensional SVAR with p lags; i.i.d. structural
innovations—denoted εt—distributed according to an independent multivariate normal; and unknown n × n structural
matrix B:

Yt = A1Yt−1 + · · · + ApYt−p + Bεt , E[εt ] = 0n×1, E[εtε
′

t ] ≡ In. (2.1)

where A ≡ (A1, A2, . . . , Ap) are the autoregressive parameters of the model and Σ ≡ BB′ is the covariance matrix
of reduced-form residuals, Bεt . Define the impact of shock j in variable i at k periods in the future, referred to as the
(k, i, j)-coefficient of the structural impulse–response function, to be the scalar parameter

λk,i,j(A, B) ≡ e′

iCk(A)Bej,

where ei and ej denote the ith and jth columns of the identity matrix In and Ck(A) are the reduced-form moving average
coefficients. The structural parameters are set-identified by sign restrictions

S(θ )Bej ≥ 0,

where S(θ ) is an m × n matrix whose entries are allowed to depend on the reduced-form parameters of the structural
vector autoregression: θ ≡ (vec(A)′, vech(Σ)′)′.

Gafarov et al. (2018) show that, given reduced form parameter θ , the upper bound of the identified set for λk,i,j is given
by the solution of the program

g(θ ) ≡ max
x∈Rn

e′

iCk(A)x, s.t. x′Σ−1x = 1, S(θ )x ≥ 0. (2.2)

Giacomini and Kitagawa (2018) have recently suggested estimating the impulse–response identified set by reporting the
posterior mean of g(θ ) (starting from a prior over θ ), and have shown that the posterior distribution of the upper and
lower bounds can be used to construct a robust credible set for λk,i,j.

In this context, Theorem 1 is relevant for a number of reasons. Firstly, standard results in nonlinear optimization imply
that a sufficient condition for the value function in (2.2) to be locally Lipschitz at θ is for the Mangasarian–Fromowitz
constraint qualification (MFCQ) to hold at an optimal solution (Proposition 6 in Morand et al., 2015).16 Theorem 1 thus
implies that for a large class of priors on θ , the bootstrap distribution of the plug-in estimator is asymptotically equivalent
to the posterior distribution of g(θ ).

Moreover, under regularity conditions that ensure convergence in distribution implies convergence in mean, an
estimator for g(θ ) built upon the bootstrap distribution of g (̂θn) (e.g., a bagging estimator reporting the mean of the
bootstrap draws) can be interpreted as an approximately Bayes estimator for g(θ ) (e.g., the posterior mean estimator).
Hence, decision-theoretic optimality of the Bayes estimator can be attached to the bootstrap-based estimator for g(θ ) in
large samples irrespective of g(θ ) being differentiable or not. Consequently, if one is concerned with point estimation
of the lower or upper bound of the impulse response identified set, then Theorem 1 suggests that the posterior mean
estimator considered in Giacomini and Kitagawa (2018) can be well replicated by the bagging estimator that reports the
mean of the bootstrap draws.17

Although the asymptotic equivalence between the posterior and the bootstrap distributions can be shown under full
or directional differentiability, verifying such properties for value functions is known to be complicated and may involve
stronger assumptions than we impose in this paper. For example, Morand et al. (2015) argue that ‘because the MFCQ is
not sufficient to guarantee the uniqueness of KKT [Karush–Kuhn–Tucker] multipliers, it is very difficult to obtain directional
derivatives and sharp characterizations of the generalized gradient ’.18 Thus, this paper emphasizes local Lipschitz continuity
because it is simpler to verify and so of greater potential use to practitioners.

Finally, it is worth mentioning that the arguments above carry over to the more general framework concerning
inference about the value function of a nonlinear program.

Failure of Bootstrap/Bayes Inference: Theorem 1 established the large-sample equivalence between the bootstrap
distribution of g (̂θn) and the posterior distribution of g(θ ). We now use this theorem to make a concrete connection

16 In addition to the choice set being nonempty and uniformly compact at θ . We verify all these conditions in Lemma 6 of Appendix B.3.
17 Such bagging estimator might also be easier to compute, if bootstrap draws are computationally less demanding than posterior draws. This
could happen, for example, in SVARs with conditional heteroskedasticity.
18 Indeed, standard theorems concerning the directional differentiability of the value function (Theorem 4.2 in Fiacco and Ishizuka, 1990) use the
Mangasarian–Fromowitz constraint qualification to provide bounds on the directional derivatives. Establishing directional differentiability, however,
requires verifying additional properties about the set of Lagrange multipliers or making additional assumptions on the sign restrictions under
consideration (Gafarov et al., 2018). These are stronger assumptions than we impose in Lemma 6 of Appendix B.3, where we formally apply the
results of our paper to SVAR example. To the best of our knowledge, directional differentiability of the value function is only straightforward to
verify in well-behaved optimization problems; for example, convex programs with non-empty interiors (see Corollary 5 in Milgrom and Segal, 2002
and Theorem 4.2 in Fiacco and Ishizuka, 1990).



166 T. Kitagawa, J.L. Montiel Olea, J. Payne et al. / Journal of Econometrics 217 (2020) 161–175

between the coverage of bootstrap-based confidence intervals and the coverage of Bayesian credible intervals based on
the quantiles of the posterior.

We start by assuming that a nominal 100(1 − α)% bootstrap confidence interval fails to cover g(θ ) at a point of
nondifferentiability. Then, we show that a 100(1 − α − ϵ)% credible interval based on the quantiles of the posterior
distribution of g(θ ) will also fail to cover g(θ ) for any ϵ > 0.19

Set-up for Theorem 2: Let qBα(X
n) be defined as:

qBα(X
n) ≡ inf

c
{c ∈ R | PB∗(g(θB∗n ) ≤ c | Xn) ≥ α}.

The quantile based on the posterior distribution qPα(X
n) is defined analogously. A nominal 100(1−α)% two-sided confidence

interval for g(θ ) based on the bootstrap distribution g(θB∗n ) can be defined as follows

CSBn (1 − α) ≡

[
qBα/2(X

n) , qB1−α/2(X
n)

]
.

This is a typical confidence interval based on the percentile method of Efron, p. 327 in Van der Vaart (2000).

Definition. We say that the nominal 100(1− α)% bootstrap confidence interval fails to cover the parameter g(θ ) at θ by
at least 100dα% (0 < dα < 1 − α) if

lim sup
n→∞

Pn
η

(
g(θ ) ∈ CSBn (1 − α)

)
≤ 1 − α − dα, (2.3)

where Pn
η refers to the distribution of (X1, . . . , Xn) under the parameter η.

The next theorem relates the coverage probability of the Bayesian credible interval for g(θ ) to the coverage probability
of its bootstrap confidence interval. We state the theorem with a high level assumption on the closeness of quantiles and
later provide a number of conditions under which the required closeness in quantiles can be established.

Theorem 2. Suppose that the nominal 100(1− α)% bootstrap confidence interval fails to cover g(θ ) at θ by at least 100dα%.
Suppose in addition that for any 0 < ϵ < α

Pn
η[q

P
α−ϵ(X

n) ≤ qBα(X
n) ≤ qPα+ϵ(X

n)] → 1.

That is, the α-quantile of the bootstrap is in between the α−ϵ and α+ϵ quantiles of the posterior of g(θ ) with high probability.
Then for any 0 < ϵ < α:

lim sup
n→∞

Pn
η

(
g(θ ) ∈

[
qP(α+ϵ)/2(X

n) , qP1−(α+ϵ)/2(X
n)

])
≤ 1 − α − dα.

Thus, the nominal 100(1 − α − ϵ)% credible interval based on the quantiles of the posterior fails to cover g(θ ) at θ by at least
100(dα − ϵ)%.

Proof. See Appendix A.2.20 □

This result is not a direct corollary of Theorem 1 because convergence in distribution does not guarantee that the
quantiles of the bootstrap distribution of g (̂θn) are close to the quantiles of the posterior of g(θ ).

Remark 2. The desired closeness of quantiles can be established under a few more regularity assumptions. For instance,
if we assume that the posterior distribution

√
n(g(θP∗

n )−g(θ̂n)) admits a p.d.f that is uniformly bounded for all n, then we
can also verify the conditions of Theorem 2 (see Theorem 3 in section B.1 of the Appendix for the details). This condition
is not implied by (nor implies) directional differentiability. We verify our condition in the illustrative example presented
in Section 3.

Posterior Distribution of g(θP∗) under Directional Differentiability: In order to give a more concrete characterization
of the posterior distribution of g(θP∗) in large samples, we now assume that g is directionally differentiable. That is, we
assume there is a continuous function g ′

θ0
: Rp

→ R such that for any compact set K ⊆ Rp and any sequence of positive
numbers tn → 021:

sup
h∈K

⏐⏐t−1
n (g(θ0 + tnh) − g(θ0)) − g ′

θ0
(h)

⏐⏐ → 0.

19 The adjustment factor ϵ is introduced because the quantiles of both the bootstrap and the posterior for nondifferentiable functions might remain
random even in large samples.
20 We can observe that it immediately follows that the reverse also applies. If the 100(1− α)%–credible interval fails to cover the parameter g(θ )
at θ , then so must the 100(1 − α − ϵ)%–bootstrap confidence interval. Note that our approximation holds for any fixed ϵ, but we cannot guarantee
that our approximation holds if we take the limit.
21 One could simply say there is a continuous function g ′

θ : Rp
→ R such that for any converging sequence hn → h:⏐⏐⏐⏐√n

(
g

(
θ0 +

hn
√
n

)
− g(θ0)

)
− g ′

θ0
(hn)

⏐⏐⏐⏐ → 0.
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Proposition 1 in Dümbgen (1993) and equation A.41 in Theorem A.1 in Fang and Santos (2019) in combination
with our Theorem 1 can be used to show that, under directional differentiability, the limiting distribution of g(θ ) is
g ′

θ0
(Z + Zn) − g ′

θ0
(Zn).22

The limiting distribution g ′

θ0
(Z + Zn) − g ′

θ0
(Zn) allows us to characterize and compare large sample approximations of

g(θP∗
n ) with and without directional differentiability.
If g ′

θ0
(·) is linear (which is the case if g is fully differentiable), then the derivative can be characterized by a vector g ′

θ0
and so

√
n(g(θP∗

n ) − g (̂θn)) converges to

g ′

θ0
(Z + Zn) − g ′

θ0
(Zn) = g ′

θ0
(Z).

This is the same limit as one would get from applying the delta method to g (̂θn). Thus, under full differentiability, the
posterior distribution of g(θ ) can be approximated as

g(θP∗

n ) ≈ g (̂θn) +
1

√
n
g ′

θ0
(Z).

Moreover, this distribution coincides with the asymptotic distribution of the plug-in estimator, g (̂θn), by a standard delta
method argument.

If g ′

θ0
is nonlinear, then the limiting distribution of

√
n(g(θP∗

n ) − g (̂θn)) becomes a nonlinear transformation of Z . This
nonlinear transformation need not be Gaussian (even if Z is), and need not be centered at zero. Moreover, the nonlinear
transformation g ′

θ0
(Z + Zn) − g ′

θ0
(Zn) is different from the asymptotic distribution of the plug-in estimator g (̂θn) which is

simply g ′

θ0
(Z).23 Thus, one can say that for directionally differentiable functions

g(θP∗

n ) ≈ g (̂θn) +
1

√
n
(g ′

θ0
(Z + Zn) − g ′

θ0
(Zn)), where Zn =

√
n(̂θn − θ0).

Even though we have a closed-form expression for the bootstrap and posterior large-sample approximation, we cannot
directly apply the results in Romano and Shaikh (2010) to establish the closeness of quantiles. The reason is that the
large-sample approximation still depends on the data. In the appendix, we show that a (Lipschitz) continuity restriction
on the c.d.f of the limiting distribution can be used to verify the high-level assumption of Theorem 2.24

3. Illustration of main results for |θ|

The main result of this paper, Theorem 1, can be illustrated in the following simple parametric environment. Let
Xn

= (X1, . . . , Xn) be an i.i.d. sample of size n from the statistical model:

Xi ∼ N (θ, 1).

Consider the following family of priors for θ :

θ ∼ N (0, (1/λ2)),

where the precision parameter satisfies λ2 > 0. The transformation of interest is the absolute value function:

g(θ ) = |θ |.

It is first shown that when θ0 = 0 this environment satisfies Assumptions 1–3. Then, the bootstrap distribution for
g (̂θn) and posterior distributions of g(θ ) are explicitly computed and compared.

Relation to main assumptions: The transformation g is Lipschitz continuous and differentiable everywhere, except at
θ0 = 0. Thus, Assumption 1 is satisfied.

We consider the Maximum Likelihood estimator, which is θ̂n = (1/n)
∑n

i=1 Xi so
√
n(̂θn−θ ) ∼ Z ∼ N (0, 1). This means

that Assumption 2 is satisfied.

See p. 479 in Shapiro (1990). The continuous, not necessarily linear, function g ′

θ (·) will be referred to as the (Hadamard) directional derivative of g
at θ0 .
22 For the sake of completeness, Lemma 5 in Appendix B.2 shows that if Assumptions 1–3 hold and g is directionally differentiable (in the sense
defined in Remark 2), then,

β(
√
n(g(θP∗

n ) − g (̂θn)), g ′

θ0
(Z + Zn) − g ′

θ0
(Zn) ; Xn)

p
→ 0

holds, where Zn =
√
n(̂θn − θ0) and Z are as defined in Assumption 2.

23 This follows from an application of the delta method for directionally differentiable functions in Shapiro (1991) or from Proposition 1 in Dümbgen
(1993).
24 See Assumption 4 in Appendix B.2 for the details. This additional assumption is enough to establish the closeness of bootstrap/posterior quantiles
as required by Theorem 2 under the assumption that g is directionally differentiable.
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This environment is analytically tractable so the distributions of θP∗
n and θB∗n can be computed explicitly. The posterior

distribution for θ is

θP∗

n |Xn
∼ N

( n
n + λ2

θ̂n,
1

n + λ2

)
,

which implies that
√
n(θP∗

n − θ̂n)|Xn
∼ N

(
−λ2

n + λ2

√
n̂θn,

n
n + λ2

)
.

Consequently,

β

(√
n(θP∗

n − θ̂n) , N (0, 1); Xn
)

p
→ 0.

This implies that under, θ0 = 0, the first part of Assumption 3 holds.25
Second, consider a parametric bootstrap for the sample mean, θ̂n. We decided to focus on the parametric bootstrap

to keep the exposition as simple as possible. The parametric bootstrap is implemented by generating a large number of
draws (xj1, . . . , x

j
n), j = 1, . . . , J from the model

xji ∼ N (̂θn, 1), i = 1, . . . , n,

recomputing the ML estimator for each of the draws. This implies that the bootstrap distribution of θ̂n is

θB∗n ∼ N (̂θn, 1/n),

so, for the parametric bootstrap it is straightforward to see that

β

(√
n(θB∗n − θ̂n) , N (0, 1); Xn

)
= 0.

This means that the second part of Assumption 3 holds.

Asymptotic Behavior of Posterior/Bootstrap Inference for g(θ ) = |θ |: Since Assumptions 1–3 are satisfied, Theorem 1
holds.

In this example, the posterior distribution of g(θP∗
n )|Xn can be characterized explicitly as⏐⏐⏐ 1

√
n + λ2

Z∗
+

n
n + λ2

θ̂n

⏐⏐⏐, Z∗
∼ N (0, 1)

and therefore
√
n(g(θP∗

n ) − g (̂θn)) can be written as⏐⏐⏐ √
n

√
n + λ2

Z∗
+

n
n + λ2

√
n̂θn

⏐⏐⏐ −

⏐⏐⏐√n̂θn
⏐⏐⏐, Z∗

∼ N (0, 1). (3.1)

Theorem 1 shows that when θ0 = 0 and n is large enough, this expression can be approximated in the bounded Lipschitz
distance in probability by⏐⏐⏐Z + Zn

⏐⏐⏐ −

⏐⏐⏐Zn⏐⏐⏐ =

⏐⏐⏐Z +
√
n̂θn

⏐⏐⏐ −

⏐⏐⏐√n̂θn
⏐⏐⏐, Z ∼ N (0, 1), (3.2)

which corresponds to the bootstrap distribution of g(θ̂n) (after appropriate centering and scaling).
Moreover, conditional on the data, the distribution of (3.1) has density equal to a shift of a folded normal and can

bounded above by a constant that does not depend on n. Theorem 3 in Section B.1 of the Appendix implies that the
assumptions of Theorem 2 are verified; that is, the quantiles of (3.1) and (3.2) are close to each other.

Observe that at θ0 = 0 the sampling distribution of the plug-in ML estimator for |θ | is
√
n(|̂θn| − |θ0|) ∼ |Z |.

Thus, the approximate distribution of the posterior differs from the asymptotic distribution of the plug-in ML estimator
and the typical Gaussian approximation for the posterior will not be appropriate.

Graphical interpretation of Theorem 1: One way to illustrate Theorem 1 is to compute the 95% credible intervals for |θ |
when θ0 = 0 using the quantiles of the posterior. We can then compare the 95% credible intervals to the 95% confidence
intervals from the bootstrap distribution.

25 The last equation follows from the fact that for two Gaussian real-valued random variables X ∼ N (µ1, σ
2
1 ) and Y ∼ N (µ2, σ

2
2 ) we have that⏐⏐⏐E[f (X)] − E[f (Y )]

⏐⏐⏐ ≤

√
2
π

⏐⏐⏐σ 2
1 − σ 2

2

⏐⏐⏐ +

⏐⏐⏐µ1 − µ2

⏐⏐⏐.
Therefore:

β

(√
n(θP∗

n − θ̂n) , N (0, 1); Xn
)

≤

√
2
π

⏐⏐⏐ n
n + λ2

− 1
⏐⏐⏐ +

⏐⏐⏐ λ2

n + λ2

√
n̂θn

⏐⏐⏐.



T. Kitagawa, J.L. Montiel Olea, J. Payne et al. / Journal of Econometrics 217 (2020) 161–175 169

Fig. 1. 95% Credible Intervals for |θ | and 95% Parametric Bootstrap Confidence Intervals. Description of Fig. 1: 95% Credible intervals for |θ | obtained
from four different priors and evaluated at different realizations of the data (n = 100). (Blue, Dotted Line) 95% confidence intervals based on the
quantiles of the bootstrap distribution |N (̂θn, 1/n)|. The bootstrap distribution only depends on the data through θ̂n . (Red, Dotted Line) 95% credible
intervals based on the closed-form solution for the posterior. (Red, Circles) 95% credible intervals based on Matlab’s MCMC program (computed for
1000 possible data sets from a standard normal model). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Observe from (3.2) that the approximation to the centered and scaled posterior and bootstrap distributions depends on
the data via

√
nθ̂n. Thus, in Fig. 1 we report the 95% credible and confidence intervals for data realizations

√
nθ̂n ∈ [−3, 3].

In all four plots the bootstrap confidence intervals are computed using the parametric bootstrap. Posterior credible
intervals are presented for four different priors for θ : N (0, 1/5), N (0, 1/10), γ (2, 2) − 3 and (β(2, 2) − 0.5) × 5. The
posterior for the first two priors is obtained using the expression in (3.1), while the posterior for the last two priors is
obtained using the Metropolis–Hastings algorithm (Geweke, 2005, p. 122).

Coverage of Credible Intervals: In this example, the two-sided confidence interval based on the quantiles of the
bootstrap distribution of |̂θn| fails to cover with the nominal probability |θ | when θ = 0. Theorem 2 showed that the
two-sided credible intervals based on the quantiles of the posterior should exhibit the same problem. This is illustrated
in Fig. 2. Thus, a frequentist cannot presume that a credible interval for |θ | based on the quantiles of the posterior will
deliver a desired level of coverage.

As Liu et al. (2015) observe, although it is common to report credible intervals based on the α/2 and 1−α/2 quantiles
of the posterior, a Bayesian might find these credible intervals unsatisfactory. In this problem, it is perhaps more natural
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Fig. 2. Coverage Probability of 95% Credible Intervals and Parametric Bootstrap Confidence Intervals for |θ |. Description of Fig. 2: Coverage probability
of 95% bootstrap confidence intervals and 95% credible intervals for |θ | obtained from four different priors and evaluated at different realizations
of the data (n = 100). (Blue, Dotted Line) Coverage probability of 95% confidence intervals based on the quantiles of the bootstrap distribution
|N (̂θn, 1/n)|. (Red, Dotted Line) 95% credible intervals based on quantiles of the posterior. Cases (a) and (b) use the closed form expression for the
posterior. Cases (c) and (d) use Matlab’s MCMC program. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

to consider one-sided credible intervals or Highest Posterior Density intervals. In Section C of the online supplementary
materials we consider an alternative example, g(θ ) = max{θ1, θ2}, where the decision between two-sided and one-sided
credible intervals is less obvious, but the two-sided credible interval still experiences the same problem as the bootstrap.

4. Conclusion

This paper studied the asymptotic behavior of the posterior distribution of parameters of the form g(θ ), where g(·) is
locally Lipschitz continuous but possibly nondifferentiable. We have shown that the bootstrap distribution of g (̂θn) and
the posterior of g(θ ) are asymptotically equivalent.

One implication from our results is that Bayesians can interpret bootstrap inference for g(θ ) as approximately valid
posterior inference in large samples. In fact, Bayesians can use bootstrap draws to conduct approximate posterior inference
for g(θ ) whenever bootstrapping g (̂θn) is more convenient than MCMC sampling. This reinforces observations in the
statistics literature noting that by ‘‘perturbing the data, the bootstrap approximates the Bayesian effect of perturbing
the parameters’’ (Friedman et al., 2017, p. 236). Our results also provide a better understanding of what type of statistics
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could preserve the large-sample equivalence between bootstrap and posterior resampling methods, a question that has
been explored by Lo (1987).

Another implication from our main result—combined with known results about bootstrap inconsistency—is that it
takes only mild departures from differentiability (such as directional differentiability) to make the posterior distribution
of

√
n(g(θ )− g (̂θn)) behave differently than the limit of

√
n(g (̂θn)− g(θ )). We showed that whenever nondifferentiability

causes a bootstrap confidence interval to cover g(θ ) less often than desired, a credible interval based on the quantiles of
the posterior will have distorted frequentist coverage as well.

Appendix A. Main theoretical results

A.1. Proof of Theorem 1

Lemma 1. If β(Z∗
n , Z

∗
; Xn)

p
→ 0, then Z∗

n converge in distribution to Z∗ unconditionally, i.e.

sup
f∈BL(1,Rp)

⏐⏐⏐E[f (Z∗

n )] − E[f (Z∗)]
⏐⏐⏐ → 0, as n → ∞.

Proof. Define

An ≡ sup
f∈BL(1,Rp)

⏐⏐⏐E[f (Z∗

n )|X
n
] − E[f (Z∗)|Xn

]

⏐⏐⏐.
This random variable is bounded by 2 and converges to zero in probability by assumption. Theorem 4.1.4 of Chung (2001)
(p. 71), implies that An converges in L1-norm to zero; i.e., E[An] → 0 as n → ∞.

For any f ∈ BL(1,Rp),

An ≥

⏐⏐⏐E[f (Z∗

n )|X
n
] − E[f (Z∗)|Xn

]

⏐⏐⏐.
Taking expectation on both sides

E[An] ≥ E
[⏐⏐⏐E[f (Z∗

n )|X
n
] − E[f (Z∗)|Xn

]

⏐⏐⏐],
≥

⏐⏐⏐E[
E[f (Z∗

n )|X
n
] − E[f (Z∗)|Xn

]

]⏐⏐⏐,
=

⏐⏐⏐E[f (Z∗

n )] − E[f (Z∗)]
⏐⏐⏐.

Consequently,

sup
f∈BL(1,Rp)

⏐⏐⏐E[f (Z∗

n )] − E[f (Z∗)]
⏐⏐⏐ ≤ E[An] → 0.

By part (iii) of Lemma 2.2 (Portmanteau) in Van der Vaart (2000) (p. 6), Z∗
n converges to Z∗ in distribution

(unconditionally). □

Proof of Theorem 1. Theorem 1 follows from Lemma 1. Note first that Assumptions 1–3 imply that the assumptions of
Lemma 1 are verified for both θP∗

n and θB∗n . Define

An ≡ sup
f∈BL(1,Rp)

⏐⏐⏐E[f (Z∗P
n )|Xn

] − E[f (Z∗B
n )|Xn

]

⏐⏐⏐,
Bn ≡ sup

f∈BL(1,Rp)

⏐⏐⏐E[f (
√
n(g(θ∗P

n ) − g (̂θn))) | Xn
]

−E[f (
√
n(g(θ∗B

n ) − g (̂θn))) | Xn
]

⏐⏐⏐,
where Z∗B

n ≡
√
n(θ∗B

n − θ̂n) and Z∗P
n =

√
n(θ∗P

n − θ̂n). We break the proof of the Theorem into 8 steps.

Step 1: Fix ϵ > 0. Lemma 1 implies that both Z∗P
n and Z∗B

n are tight, as they converge in distribution (unconditionally)
to some random element Z∗. Then, there exists a compact subset Kϵ ⊆ Rp such that P[Z∗P

n ∈ Kϵ] ≥ 1 − ϵ and
P[Z∗B

n ∈ Kϵ] ≥ 1 − ϵ for all n.

Step 2: By Assumption 1, g is locally Lipschitz at θ0, then there exists δ0 > 0 such that:

|g(x) − g(y)| ≤ c0∥x − y∥ x, y ∈ V0 ≡ {z : ∥z − θ0∥ < δ0}.
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Define V1 ≡ {θ : ∥θ − θ0∥ < δ0/2} ⊂ V0. By Assumption 2, there exists N1 ≡ N1(δ0, ϵ) such that P[θ̂n ∈ V1] ≥ 1 − ϵ for
all n ≥ N1.

Step 3: Consider M ≡ sup{∥a∥ : a ∈ Kϵ} and define ∆n : Rp
× Rp

→ R

∆n(a, b) ≡
√
n(g(b + a/

√
n) − g(b)).

For each b ∈ V1 and n > N2 ≡ (2M/δ0)2, we claim that ∆n(·, b) is a c0-Lipschitz function in Kϵ . This means that for
each b ∈ V1 and n sufficiently large

|∆n(a1, b) −∆n(a2, b)| ≤ c∥a1 − a2∥, ∀a1, a2 ∈ Kϵ .

It is then sufficient to show that

b + a/
√
n ∈ V0

for all a ∈ Kϵ and n > N2. This is true because if any two points

b + a1/
√
n and b + a2/

√
n

both belong to V0 (which is a neighborhood of θ0), the locally Lipschitz property of g at θ0 readily gives

|
√
n(g(b + a1/

√
n) − g(b)) −

√
n(g(b + a2/

√
n) − g(b))| ≤ c0∥a1 − a2∥.

If b ∈ V1, n > 2, and a ∈ Kϵ

∥b + a/
√
n − θ0∥ ≤ ∥b − θ0∥ + ∥a/

√
n∥

≤ δ0/2 + ∥a/
√
n∥,

(as b ∈ V1)

≤ δ0/2 + M/
√
n,

(as a ∈ Kϵ)
≤ δ0,

(as n > N2).

Step 4: For each n > N2 and b ∈ V1, there exists Fn(·, b) : Rp
→ R such that Fn(·, b) is a c0-Lipschitz function and

Fn(a, b) = ∆n(a, b) for all a ∈ Kϵ (See McShane, 1934; Whitney, 1934), i.e. Fn(·, b) is a c0-Lipschitz extension of ∆n(·, b)|Kϵ .

Step 5: For each n > N2, b ∈ V1 and f ∈ BL(1,R), we have that 1
c̃ f ◦ Fn(·, b) ∈ BL(1,Rp), where c̃ ≡ max{c0, 1}. Therefore,⏐⏐⏐⏐E[

f ◦ Fn(Z∗P
n , b)

c̃
−

f ◦ Fn(Z∗B
n , b)

c̃

⏐⏐⏐ Xn
]⏐⏐⏐⏐

is smaller than or equal to

sup
f∈BL(1,Rp)

⏐⏐⏐E[f (Z∗P
n )|Xn

] − E[f (Z∗B
n )|Xn

]

⏐⏐⏐ ≡ An.

Consequently:

1{̂θn ∈ V1}

⏐⏐⏐⏐E[(
f ◦ Fn(Z∗P

n , θ̂n)
c̃

−
f ◦ Fn(Z∗B

n , θ̂n)
c̃

) ⏐⏐⏐ Xn
]⏐⏐⏐⏐ ≤ An.

Since 1{̂θn ∈ V1} is Xn-measurable⏐⏐⏐E[
1{̂θn ∈ V1}

(
f ◦ Fn(Z∗P

n , θ̂n)
c̃

−
f ◦ Fn(Z∗B

n , θ̂n)
c̃

) ⏐⏐⏐ Xn
]⏐⏐⏐ ≤ An.

Step 6: Let N3 ≡ max{N1,N2}. For each f ∈ BL(1,R)⏐⏐E[f (
√
n(g(θ∗P

n ) − g (̂θn))) | Xn
] − E[f (

√
n(g(θ∗B

n ) − g (̂θn))) | Xn
]
⏐⏐

= c̃ ·

⏐⏐⏐⏐E[
f (

√
n(g (̂θn + Z∗P

n /
√
n) − g (̂θn)))

c̃

⏐⏐⏐ Xn
]

−E
[
f (

√
n(g (̂θn + Z∗B

n /
√
n) − g (̂θn)))

c̃
| Xn

]⏐⏐⏐⏐
= c̃ ·

⏐⏐⏐⏐E[
f ◦∆n(Z∗P

n , θ̂n)
c̃

⏐⏐⏐ Xn
]

− E
[
f ◦∆n(Z∗B

n , θ̂n)
c̃

⏐⏐⏐ Xn
]⏐⏐⏐⏐

≤ |I1| + |I2|,
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where

I1 ≡ c̃ · 1{̂θn ∈ V1} ·

(
E

[
f ◦∆n(Z∗P

n , θ̂n)
c̃

⏐⏐⏐ Xn
]

− E
[
f ◦∆n(Z∗B

n , θ̂n)
c̃

⏐⏐⏐ Xn
])

,

I2 ≡ c̃ · 1{̂θn /∈ V1} ·

(
E

[
f ◦∆n(Z∗P

n , θ̂n)
c̃

⏐⏐⏐ Xn
]

− E
[
f ◦∆n(Z∗B

n , θ̂n)
c̃

⏐⏐⏐ Xn
])

.

For the second term, I2, |I2| ≤ 1{̂θn /∈ V1}·2 since f ∈ BL(1,R). For the first term, I1, Fn(·, θ̂n) is a well-defined c0-Lipschitz
function since θ̂n ∈ V1. Since 1{̂θn ∈ V1} is Xn-measurable, we can further decompose I1 as the sum of I3 + I4 + I5 where

I3 ≡ c̃ · E
[
1{θ̂n ∈ V1} ·

(
f ◦∆n(Z∗P

n , θ̂n)
c̃

−
f ◦ Fn(Z∗P

n , θ̂n)
c̃

) ⏐⏐⏐ Xn
]
,

I4 ≡ c̃ · E
[
1{θ̂n ∈ V1} ·

(
f ◦ Fn(Z∗B

n , θ̂n)
c̃

−
f ◦∆n(Z∗B

n , θ̂n)
c̃

) ⏐⏐⏐ Xn
]
,

I5 ≡ c̃ · E
[
1{θ̂n ∈ V1} ·

(
f ◦ Fn(Z∗P

n , θ̂n)
c̃

−
f ◦ Fn(Z∗B

n , θ̂n)
c̃

) ⏐⏐⏐ Xn
]
.

From the definition of Fn (as extension of ∆n)

I3 = c̃ · E
[
1{Z∗P

n /∈ Kϵ} · 1{θ̂n ∈ V1} ·

(
f ◦∆n(Z∗P

n , θ̂n)
c̃

−
f ◦ Fn(Z∗P

n , θ̂n)
c̃

) ⏐⏐⏐ Xn
]
,

I4 = c̃ · E
[
{Z∗B

n /∈ Kϵ} · 1{θ̂n ∈ V1} ·

(
f ◦ Fn(Z∗B

n , θ̂n)
c̃

−
f ◦∆n(Z∗B

n , θ̂n)
c̃

) ⏐⏐⏐ Xn
]
.

and so

|I3| + |I4| ≤ E[1{Z∗P
n /∈ Kϵ} · 2 | Xn

] + E[1{Z∗B
n /∈ Kϵ} · 2 | Xn

].

In addition, by Step 5,

|I5| ≤ c̃ · An.

Collecting the inequalities⏐⏐⏐E[f (
√
n(g(θ∗P

n ) − g (̂θn))) | Xn
] − E[f (

√
n(g(θ∗B

n ) − g (̂θn))) | Xn
]

⏐⏐⏐
≤|I1| + |I2|,
≤|I3| + |I4| + |I5| + 1{̂θn /∈ V1} · 2,

≤E[1{Z∗P
n /∈ Kϵ} · 2 | Xn

] + E[1{Z∗B
n /∈ Kϵ} · 2 | Xn

] + c̃ · An + 1{̂θn /∈ V1} · 2.

Taking the supremum over f ∈ BL(1,R)

Bn ≤ E[1{Z∗P
n /∈ Kϵ} · 2 | Xn

] + E[1{Z∗B
n /∈ Kϵ} · 2 | Xn

] + c̃ · An + 2 · 1{θ̂n /∈ V1}.

Applying expectation:

E[Bn] ≤ 2 · P[Z∗P
n /∈ Kϵ] + 2 · P[Z∗B

n /∈ Kϵ] + c̃ · E[An] + 2 · P[θ̂n /∈ V1].

Step 7: For any n > N3 (which was previously defined as the maximum of N1 and N2), using Step 1 and Step 2 in Step 6

E[Bn] ≤ 4 · ϵ + c̃ · E[An] + 2 · ϵ.

Assumption 3 and the triangle inequality imply that An converges to zero in probability. Since An is also bounded by 2,
once again applying Theorem 4.1.4 of Chung (2001), we conclude that An converges in L1-norm to zero: E[An] → 0. Then,

lim supE[Bn] ≤ 6 · ϵ + c̃ · lim supE[An] = 6 · ϵ

Thus, lim supE[Bn] ≤ 0, which implies that limE[Bn] = 0 since Bn ≥ 0.

Step 8: Since Bn is a random variable bounded by 2, and it converges to zero in L1-norm, we conclude, by a standard
application of Markov’s inequality, Bn converges to zero in probability.

These steps prove Theorem 1. □

A.2. Proof of Theorem 2

Proof of Theorem 2. Define, for any 0 < β < 1, the critical values cB∗β (Xn) and cP∗

β (Xn) as:

cB∗β (Xn) ≡ inf
c

{c ∈ R | PB∗(
√
n(g(θB∗n ) − g (̂θn)) ≤ c | Xn) ≥ β},

cP∗

β (Xn) ≡ inf
c

{c ∈ R | PP∗(
√
n(g(θP∗

n ) − g (̂θn)) ≤ c | Xn) ≥ β}.
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Note that the critical values cB∗β (Xn), cP∗

β (Xn) and the quantiles for g(θB∗n ) and g(θP∗
n ) are related through the equation:

qBβ (X
n) = g (̂θn) + cB∗β (Xn)/

√
n,

qPβ (X
n) = g (̂θn) + cP∗

β (Xn)/
√
n.

This implies that:

CSBn (1 − α) =
[
g (̂θn) + cB∗α/2(X

n)/
√
n , g (̂θn) + cB∗1−α/2(X

n)/
√
n
]
,

CSPn (1 − α − ϵ) =
[
g (̂θn) + cP∗

α/2+ϵ/2(X
n)/

√
n , g (̂θn) + cP∗

1−α/2−ϵ/2(X
n)/

√
n
]
.

By assumption of the theorem for every 0 < ϵ < α and δ > 0 there exists N(ϵ, δ) such that

Pn
η[c

P∗

α−ϵ(X
n) ≤ cB∗α (Xn) ≤ cP∗

α+ϵ(X
n)] ≥ 1 − δ, ∀n ≥ N(ϵ, δ).

This implies

Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cB∗α (Xn)) =Pn

η(
√
n(g (̂θn) − g(θ )) ≤ −cB∗α (Xn), cP∗

α−ϵ(X
n) ≤ cB∗α (Xn))

+Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cB∗α (Xn), cP∗

α−ϵ(X
n) > cB∗α (Xn)),

≤Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cP∗

α−ϵ(X
n)) + δ,

and

Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cP∗

α+ϵ(X
n)) =Pn

η(
√
n(g (̂θn) − g(θ )) ≤ −cP∗

α+ϵ(X
n), cB∗α (Xn) ≤ cP∗

α+ϵ(X
n))

+Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cP∗

α+ϵ(X
n), cB∗α (Xn) > cP∗

α+ϵ(X
n)),

≤Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cB∗α (Xn)) + δ.

Thus, for n > N(ϵ, δ):

Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cB∗α (Xn)) ≤ Pn

η(
√
n(g (̂θn) − g(θ )) ≤ −cP∗

α−ϵ(X
n)) + δ, (A.1)

Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cB∗α (Xn)) ≥ Pn

η(
√
n(g (̂θn) − g(θ )) ≤ −cP∗

α+ϵ(X
n)) − δ. (A.2)

Consequently:

Pn
η

(
g(θ ) ∈ CSBn (1 − α)

)
= Pn

η

(
g(θ ) ∈

[
g (̂θn) + cB∗α/2(X

n)/
√
n , g (̂θn) + cB∗1−α/2/

√
n
])

= Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cB∗α/2(X

n))

− Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cB∗1−α/2(X

n))

≥ Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cP∗

α/2+ϵ/2(X
n))

− Pn
η(

√
n(g (̂θn) − g(θ )) ≤ −cP∗

1−α/2−ϵ/2(X
n)) − δ

(Replacing α by α/2, ϵ by ϵ/2 and δ by δ/2 in (A.2) and
replacing α by 1 − α/2, ϵ by ϵ/2 and δ by δ/2 in (A.1))

= Pn
η

(
g(θ ) ∈ CSPn (1 − α − ϵ)

)
− δ.

Therefore, for every 0 < ϵ < α:

1 − α − dα ≥ lim sup
n→∞

Pn
η

(
g(θ ) ∈ CSBn

)
≥ lim sup

n→∞

Pn
η

(
g(θ ) ∈ CSPn (1 − α − ϵ)

)
,

which implies that

1 − α − ϵ − (dα − ϵ) ≥ lim sup
n→∞

Pn
η

(
g(θ ) ∈ CSPn (1 − α − ϵ)

)
.

This implies that if the bootstrap fails at θ by at least 100dα% given the nominal confidence level 100(1 − α)%, then
the confidence interval based on the quantiles of the posterior will fail at θ—by at least 100(dα − ϵ)%—given the nominal
confidence level (1 − α − ϵ).

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.10.009.
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